
AD-AOSS 710 AIR FORCE INS? OF TECH WRIGHT-PATERSON AF9 044 SCHO-CYTC Fj6f 12/1
LEARNING SAE EVALUATION FUNCTIONS WITH A COMPOUNO LINEAR ACHI-ETC(,0
MA SO P NELSON

UNCLASSIFIEO AFIT/iSE$/60-2 ML

I IIII
.1

2 i..

FlWl

11111 .0 2.0

1101 5 Uiii 1. 6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANUAFR~l :P6- A

LEVEL
I

DTICS ELECTE

JUN i 9 iM 0,

k }JEARNING r.E VALUATION FUNCTIONS/ WITH A.OMPOUNDINEAR MACHINE-

_THESIS

laAFIT/GCS/EE/;#2 GO Weiiam lson
apt " Ubm-

Approved for public release; distribution unlimited.

o_:aL ;4,u,
- .p: i ,l t l i l l > -.A : = " - . .. - ..

AFIT/GCS/EE/80-2

LEARNING GAME EVALUATION FUNCTIONS

WITH A COMPOUND LINEAR MACHINE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

S

Access ion For
'TIS GM&I

D C TAB
Unannounoed
JustiticatioD

By-

!.trtut n/ I

by Avail and/or

William P. Nelson Dist special

Capt USAF

Graduate Computer Science

March 1980

Approved for public release; distribution unlimited.

I.
- - -

Table of Contents

Page

Preface v

List of Figures vi

List of Tables . vii

Abstract viii

I. Introduction 1

II. Concepts in Pattern Recognition and Game Playing 4

Patterns and Linear Discrimination 4
Game State Spaces, Game Trees, and Evaluation

Functions 8

III. Proposal for a Compound Linear Machine for Game Playing 12

Patterns and Game Playing 12
Proposed Stnucture for a Compound Linear Machine

for Game Playing 14

IV. An Algorithm for the Application of Linear Discriminants
in Game Playing 20

General Statement of Algorithm 20
Step 1. Choose a State Space Representation 21
Step 2. Choose a Pattern Representatior. of a State 24
Step 3. Choose a Set of Training Boards 28
Step 4. Attempt to Find a Linear Discriminant

Function for Each Training Board 30
Step 5a. Cluster the Training Boards 34
Step 5b. Find a Move Discriminant for Each Class . 41
Step 5c. Iteratively Improve Performance of

Discriminants 42

V. Comparison of the Compound Linear Machine Approach to
Other Game Playing Approaches 47

Overview of Other Approaches to Machine Game Playing . 47
Comparison to Forcing State Approach 47
General Description of Shannon Approach 49
Comparison to Non-Learning Shannon Type Programs . . . 50
Comparison to Samuel's Shannon Type Checker Program . 52
Comparison to an Advice-Taking Shannon-Like Program . 57

VI. A Compound Linear Machine for Chess 62

t Chapter Overview 62

L.AIL

Table of Contents (Contd)

Page

Description of Algorithm Application 62
Discussion of Results 74

VII. Conclusions and Recommendations 81

VIII. Bibliography 84

Appendix 1 - Pascal Code for Chess Board Evaluation and
Related Routines 88

Appendix 2 - Pascal Code for Central Accelerated Relaxation
Method (CARM) and Related Routines 102

Appendix 3 - Example Partial Game Trees, Tic-Tac-Toe 108

Vita 112

Vi

Preface

The work presented in this paper and the results achieved would

not have been accomplished without the advice and interest of Major

Joseph Carl, Major Alan Ross, Dr Tom Hartrum, and Dr Matthew Kabrisky.

At one time or another all lent either a sympathetic ear or sound

criticism (at times both). A note of thanks is also due to the faculty

members and students who on occasion listened to explanations of why a

function or routine in a program could not possibly produce the re-

ceived results and who then pointed out the obvious reasons why it did.

A final note of thanks goes to my wife, Louise, for ignoring the

idiosyncrasies that developed in my character as the completion date

neared, and who served as secretary, typist and proof-reader throughout

the effort of producing this paper.

tv

. . . . ,-i- - -i - -

f List of Figures

Figure Page

la Structure of Compound Linear Machine for
Game Playing 17

lb Exploded View of Move Discriminant Machine 18

2 Position Numbering of Tic-Tac-Toe Board 22

3 State Description Example for Tic-Tac-Toe 23

4 Evaluation Data for a Tic-Tac-Toe Board 27

5 Example Augmented Pattern Matrix and Solution Vector
from Linear Discrimination Method 33

6 Single Linkage Hierarchial Clustering of
Tic-Tac-Toe Boards 39

7 Complete Linkage Hierarchial Clustering of

Tic-Tac-Toe Boards 40

8 Discriminant Search Progression for Tic-Tac-Toe 43

9 Numberin9 of Squares for a Chess Board 64

vt

- - " -~~~~.....-....I Z . . -

List of Tables

Table Page

1 Chess Piece Notation for State Space Description ... 64

2 Move Discrimination Results for Finding a Single
Linear Discriminant per Chess Board 75

3 Results for Finding Group Discriminants for
Chess Boards. 77

4 Results for Finding a Move Discriminant for Each
Group of Chess Boards. 77

\ / Abstract

This paper proposes a structure for a compound linear machine as

a solution to the problem of learning in machine game playing. A

possible algorithm for training the two machines is involved. An at-

tempt to use a compound machine for choosing chess moves is reported

on. Chapter II briefly presents the background concepts in pattern

recognition and machine game playing that underlie the work done.

Chapter III presents a proposed structure for a compound linear machine

that should be capable of learning in game playing. The general

rationale for the proposal is presented also. Chapter IV discusses

a possible algorithm for training the compound machine proposed. The

rationale for each step of the algorithm is discussed. The game of

tic-tac-toe is used as an example in explaining each step. Chapter V

compares and contrasts the linear machine approach with other approaches

to game playing. Chapter VI presents an attempt to apply the proposal

and associated training algorithm to the game of chess. Conclusions

and recommendations are given in Chapter VII. Appendices contain sup-

portive material and data on work performed.

ril/i

viii

I. - - - ---- ~- - -~ *J~~-'- - -- Ask

I. Introduction

Historical and Current Motivation for Machine Game Playing

Playing games by machine has historically been a major area of

study under the general topic of machine thought (Uhr, 1973:193-203).

The literature on this topic contains many examples of programs or

algorithms that play games. The most significant of these is usually

held to be A. Samuel's checker playing program because it is probably

the first and most successful program that "learned" by improving its

play through at least partially self-directed modification (Uhr, 1973:

206-7; Nilsson, 1971:151; Slagle, 1971:21-5; Samuel, 1959; Samuel, 1967).

This paper proposes the use of linear discriminants as a method by

which a machine might learn its own evaluation functions for game

playing.

Before proceeding, it may help to note the importance of machine

playing for the reader unfamiliar with, or skeptical about the practi-

cality of such study. Machine game playing is one of the major areas

in which modeling or replication of the human thought process has been

explored (Uhr, 1973:193, 210; Jackson, 1974:171-65). The conjecture

in such study is that the lessons learned in the comparatively tracta-

ble problem of game playing may find application in solving "real"

problems (Slagle, 1971:8). It is certainly true that many of the tech-

niques of game playing have much broader application (Slagle, 1971);

Nilsson, 1971; Uhr, 1973; Jackson, 1974). Lending credence to this

viewpoint is the fact that recent attempts at modeling the decisions of

military commanders have included use of techniques explored by Samuel

in his checker playing program (GRC, 1978:54-72). Another related study

nl,. { .. .

performed for the Air Force recommends researching computerized decision

making representations in the realm of artificial intelligence

(MITRE , 1979:ix).

Linear Discriminants and Game Playing

It has been conjectured that a solution to the learning problem in

machine game playing, that is the development of a decision procedure

or criterion by the game playing machine itself, could be effectively

implemented as a search for classes of game positions. These classes

would have the property that for each member of any specific class, a

linear static evaluation function associated with the class could be

used to choose the best next position from all possible next positions

(Carl, 1976). This paper proposes a structure for a compound linear

machine as an implementation of this conjecture and further presents a

possible algorithm for training the two machines involved. An attempt

to use a compound machine for choosing chess moves is reported on.

Structure of Presentation

Chapter II briefly presents the background concepts in pattern

recognition and machine game playing that underlie the work done in

later chapters. Chapter III presents a proposed structure for a com-

pound linear machine that should be capable of learning in game playing.

The general rationale for the proposal is presented also. Chapter IV

discusses a possible algorithm for training the compound machine

described in Chapter III. The rationale for each step is discussed

in detail. The game of tic-tac-toe is used as an example in explaining

each step of the algorithm. Chapter V compares and contrasts the

(linear machine approach with other approaches to game playing.

2

Chapter VI presents an attempt to apply the proposal and associated

training algorithm to the game of chess. Conclusions and recommendations

are given in Chapter VII. Appendices contain supportive material and

data on work performed.

f

3

II. Concepts in Pattern Recognition and Game Playing

Patterns and Linear Discrimination

The general theory of linear discriminants has an extensive lit-

erature (Nilsson, 1965; Duda, 1973; Minsky, 1969). The purpose of the

following discussion is to present theObasic concepts underlying the

use of linear discriminants in this project and to present the nota-

tion to be used. For a more detailed discussion the reader is directed

to the references.

The presentation will briefly cover pattern representation, dis-

criminant function definition, linear separability and linear dis-

criminant functions, generalized discriminant functions, and augmented

pattern vectors and weight space. The terminology will mimic that of

Duda and Hart (Duda, 1973) and Nilsson (Nilsson, 1965). A brief com-

parison to the terminology used in an artificial intelligence text

referenced in this work (Slagle, 1971) will close the discussion for

any reader more familiar with that text's approach. The discussion

is intended to be more informative than rigorous.

Let X be a set of d-dimensional vectors representing patterns of

an arbitrary field of interest. Any districi member i of X has the

ordered d-tuple form usually associated with vectors and we write

iT = (xl, x2, . .. , xd), where the xi's (I < i < d) are usually

termed features. Consider a collection of r subsets of X, with members

Cl, C2, • • . Cr such that CiUCj = 0 for all i, j. These subsets of X

will be called classes. It should be apparent that the set X can be

4

iA

represented as points in a d-dimensional Euchidean space. Such repre-

sentation is called a pattern space (Nilsson, 1965:8).

Let gl(x), g2(x), . gr(x) be scalar single-valued functions

of a pattern vector x, an element of X. If these functions are chosen

in such a way that gi(x) > gj(x) for I < i, j < r, i j whenever

Ve Ci , then we call them discriminant functions (Nilsson, 1965:6;

Duda, 1973:17). This paper is concerned with a particular type of

discriminant function termed a linear discriminant function, which

will now be defined along with associated terms.

Consider a family of discriminant functions of the form

d

g(x) = wi xi + wd+l =w x + Wd+i (1)
i =1

where the wi's are real coefficients and the x is a pattern vector.

Such functions are linear discriminant functions. The w associated

with each function is termed a weight (or coefficient) vector and

wd+l is termed the threshold weight (Nilsson, 1965:16; Duda, 1973:131).

If we can find a set of r such gi(x)'s, each associated with Ci such

that gi(x) > g(i), i t j, for all i contained in Ci, then the r classes

Ci to Cr are said to be linearly separable and the classification per-

formed by the discriminant functions is a linear classification

(Nilsson, 1965:20; Duda, 1973:131, 138). .The set of r such functions

used as a classifier is termed a linear machine (Duda, 1973:135).

Discriminant functions are extensible to more general cases

(Nilsson, 1965:30; Duda, 1973:135). Consider the family functions known

as linear o-functions of the form

m
= i wifi(-) + wm+l (2)

5

where each fi(x), i = 1, ..., m is a single-valued function of x. Al-

though the notation may be questionable, note that each evaluation of

fi(-)is a scalar value and that therefore one can write f T = (fl(ix),

f2(x),. . fm(x)). Then equation 2 may now be written as

() =T + Wm+l (3)

which still has a weight vector and threshold weight. The difference

is that the pattern vector x is mapped by the fi(i) i = 1, .. , m

functions into a vector of resultant values that is used by the 4 -

function to achieve discrimination. The definition of linear separa-

bility extends to this case where the roles formerly played by

functions gi(x) are now played by function oi(i), i = 1, ..., m

(Nilsson, 1965:30-31). Although the dimension of o need not equal

the dimension of X (i.e., it is not necessary that d = m), this is of

no consequence since the concern is now with separability in the

O-space.

The work presented in this paper makes use of augmented pattern

vectors represented in a weight space. These terms are defined as

follows. Consider the formulation of a discriminant function g() =

iti + wd+l, w and T of dimension d. Now consider a formulation of two

vectors such that = (-xt, 1) and - = (wt, wd+l). The vector y is

an augmented pattern vector and the vector T is an augmented weight

vector. The vectors a and y are points in a space of dimension d+l

that is termed the weight space (Nilsson, 1965:66-8; Duda, 1973:138).

If a new function g(y) is defined such that g(y-) = y- then it is

apparent that
d+l d

a=t i E a xi + (Wd+l)(1) (4)

6

and that the formulation of g(y) is equivalent to the previously

presented g(x). It follows that linear separability in one formulation

implies linear separability in the other (Nilsson, 1965:65; Duda, 1973:

138). This augmentation is also extensible to *-functions in a similar

manner.

The primary advantage of this formulation is that in trying to

find linear discriminant functions in practice, the problem is reduced

from one of looking for both a weight vector w and threshold weight

wd+l, to one of looking for a single augmented weight vector a

(Duda, 1973:138).

The work described in this paper uses linear machines composed of

s-functions. The linear machines are initially determined by use of

a training algorithm that executes on a weight space representation of

pre-selected pattern vectors (a training set). Further definition

and discussion of these concepts will be postponed until discussion of

the approach and methods employed in the project.

As a closing note on the general terminology of linear dis-

criminants, a parallelism with the notation of Slagle (Slagle, 1971:

143-62) will be noted. Slagle defines a linear evaluation function

as a function of the form Y • where Y is an n-dimensional feature

(pattern) vector and C is a coefficient (weight) vector. These terms

are the equivalent of the augmented d+l dimensional pattern vector and

feature vector, where C = i and yt = (RT, 1). Slagle's dimension n is

equivalent to the augmented dimension d+l.

Slagle's approach is to define the separating of m classes in n-l

space as the m,(n-1) pattern problem. This is equivalent to separating

m classes of un-augmented pattern vectors in d-space where obviously

d = n-i. Slagle then shows that finding a solution to the m,(n-1)

pattern problem can be transformed into a problem of finding a solution

in an m,n-half-space problem. This latter is equivalent to finding

separating functions for augmented pattern vectors in augmented

pattern or weight space.

Game State Spaces, Game Trees, and Evaluation Functions

In addition to a representation of a game playing technique, a

general representation of a game is needed. This section offers

definitions for the most common representation of a game, that of a

state space graph or its associated game tree (Nilsson, 1971:18-23;

Slagle, 1971:4-6; Uhr, 1973:193-6; Jackson, 1974:82-4, 119-24).

Evaluation functions for games will also be addressed. The notation

used is due to Jackson but is very similar to that used by Nilsson.

A state is a description of an object or condition. An operator

is a finitely describable means of transforming one state into

another. A state space description specifies a set S of starting

nodes, a set F of operators that transform one state into another,

and a set G of desired end states (goals). A solution or solution

path is specified by a possible starting node (some s an element of S),

a desired end or goal state (some g an element of G), and a finite

sequence of operators from F that transforms s to g (Jackson, 1974:

82-4). A form or expression containing variables, into which members

of S may be substituted, and used to describe states is a state

description schema (Nilsson, 1971:35). Although one has not been

defined explicitly, there must obviously be some underlying set of S

and G containing all possible states in the state space. Label this
sset C, denoting a complete set of states.

In a game state space, the set C of all possible nodes (states)

contains the set of all possible board or game positions. The arcs

or paths connecting states are the possible moves leading from one

board position to another. The operators that transform one state

to another are the rules describing legal moves in the game. The set

S of starting nodes would contain all possible starting board posi-

tions and the set G of goal nodes would contain all board positions

for which it can be said that one side has won according to the rules

of the game (Jackson, 1974:119). Note that the members of S and G

will be determined by the rules of the games. Also, when a player

resigns or concedes in a game because he feels he will lose, the state

of the game at such time probably will not be contained in the strictly

defined goal set G. Such situations can be easily handled if a

"resign" operator is defined which transforms any state to a goal

state.

Nilsson points out that a state space graph may be presented

either explicitly or implicitly. In the explicit graph specification,

the nodes and arcs are drawn physically or presented in a table. In

the implicit specification only the set S and the set F for generating

successive nodes are given (Nilsson, 1971:21-2).

In actually playing a game use is usually made of an alternate

representation of the state space, a game tree. A game tree contains

as its root some element of S. The branches from this start node to

nodes in the next level represent the possible moves from the start

node and each resultant node represents a board position reachable

from the start node. Each node is expanded in turn to board positions

that can be reached from it. The moves are usually left implicitly

9

specified by comparison of one board to another. It is usual to move

down the tree as the game progresses, with each change of level repre-

senting a possible move by an appropriate player (Jackson, 1974:124;

Slagle, 1971:4-6; Nilsson, 1971:110, 136-49). As with state spaces,

game trees may be given either implicitly or explicitly (Slagle,

1971:5).

The following more formal definitions for a tree are due to

Knuth (Knuth, 1973:305-6). A tree is defined as a finite set of nodes

T such that:

a. There is one node in the tree specifically designated
and called the root of T; and

b. The remaining nodes in T, excluding the root, are
partitioned into m > 0 distinct sets Tl, . .. , Tm,
each of which is a tree.

Note that each Ti, i = 1, . . ., m is a proper subset of T. Each Ti

is a subtree of the tree T. The recursiveness of this definition is

especially appropriate for game trees, since in searching for a move

in a game tree it is customary to expand from the current board posi-

tion to succeeding moves and to expand each of them in turn. A subtree

is thus expanded at each level of a move search. In practice the

search is often halted before the lower-most level of a subtree is

reached so that in fact a partial subtree is expanded. This is a

minor variance in terms of definition.

State space graphs or trees are probably often picked as repre-

sentations for games because for many people they seem to be a natural

(Uhr claims the most natural) representation for the problem in terms

of modeling human intelligence (Uhr, 1973:196). But even given the

10

Alk

model and a method of manipulating it, a machine must somehow pick its

way through the model. For most "interesting" games the model may

contain a very high number of nodes. For instance, estimates of

1078 possible plays in checkers, 10120 possible plays in chess, and

10720 possible plays in the Oriental game of Go have been made by

individuals who have written on machine play of these games (Jackson,

1974:125). We therefore introduce the concept of an evaluation func-

tion to be used by a machine in picking possible moves in a game.

A complete evaluation of possible plays from a given game

position, as made by a machine, usually consists of the generation

of a partial game subtree from the current position with this being

used in concert with a static evaluation function that assigns a

value (computes some measure of goodness) to board positions (Nilsson,

1971:137-40; Slagle, 1971:9-12, 143-60; Jackson, 1974:129). The func-

tion is usually formulated in such a way that it measures the potential

of the position as part of the evaluation. The use of the function

in a partial subtree search is then a substitute for a complete search

of the subtree emanating from the current position (Nilsson, 1971:

43-77; Jackson, 1974:129-34; Uhr, 1973:197, 200; Slagle, 1971:13-20).

Further discussion of the use of static evaluation functions will be

delayed until discussion of proposed and current game playing tech-

niques. The interested reader may find a finely detailed description

of the role and nature of these functions in Nilsson (Nilsson, 1971:

43-77).

11

I1. Proposal for A Compound Linear Machine for Game Playing

Patterns and Game Playing

The following discussion draws upon analyses of how human beings

make evaluations and decisions while playing chess. Chess is the basis

of the discussion because it seems to be the game most studied for

purposes of gaining knowledge about human thought in game playing. The

discussion could be extended to any game that has a complexity on the

same level (or lower) as chess. The purpose of the discussion is to

present the rationale for the succeeding proposal for the use of

linear discriminants in game playing.

The basis for proposing pattern recognition as an approach to

machine game playing is that successful human chess players apparently

look for key features that indicate what type of position currently

exists on the board and proceed with play based upon an evaluation of

these features (Charness, 1978; Hearst, 1978). Such an evaluation

indicates a pattern recognition and classification procedure is some-

how used. The specific rationale for using linear discriminants to

model the procedure is covered in Chapter IV. Following is a more

detailed statement of the apparent use of pattern recognition by

humans (and hence the rationale for use of pattern recognition in

machine game playing).

Studies performed by psychologist Alfred Binet in the nineteenth

century indicated that in visualizing or remembering chess games and

positions, chess masters remembered ideas, patterns, plans, and rela-

tions in an abstract manner as opposed to remembering exact details

(of positions (Charness, 1978:48; Hearst, 1978:178). In studies of how

12

chess players think, Adrian deGroot also noted that chess masters ap-

parently recognize positions and play based on some recognition of

features or patterns (Charness, 1978:36-9, 44-6; Hearst, 1978:182-6).

Charness evaluates deGroot's results as indicating an ability on the

part of good chess players to recognize appropriate features and to

use appropriate productions to generate good moves (Charness, 1978:43).

These two studies and others cited by Charness and Hearst indicate that

there are reasonable grounds for modeling the play of chess as a

pattern recognition problem. Implicitly, the same can be said for

other complex games.

A study by Simon and Gilmartin, as referenced by Charness, indi-

cates that a chess master "stores" chess patterns in his memory. They

estimate that 50,000 patterns would theoretically be needed to perform

recall of chess knowledge as well as a chess master does (Charness,

1978:42). While this large number seems to contradict other statements

on abstraction and recognition by chess masters that are cited by

Charness and Hearst, it does further support the contention that a

pattern recognition process is involved in human game playing.

As a last statement on pattern perception, Ruben Fine states in

his book on how to play the middle game of chess that a strong player

sees more in a given position than a weaker player does and is "more

alive to the combinations inherent in a position" (Fine, 1952:3).

Fine discusses in his book the features he feels are critical to this

perception (Fine, 1952:3-6, 161-4). These features seem to be similar

in nature to those presented by Charness and Hearst in their discus-

sions.

13

Aft ~~m~ a ml ,ii I i -

In addition to pattern perception of position, chess masters and

strong players in general apparently use a plausible move generation

heuristic. Charness summarizes deGroot's work in the 1930's and 1940's

as discovering that good players of chess usually look at promising

moves while a poorer player "spends his time going down blind alleys"

(Charness, 1978:37). He further suggests that masters do well in

speed chess because they automatically generate plausible moves. He

also cites deGroot as saying that the average number of good moves

arising from a given position in a game between chess masters is 1.76

out of an average 38 possible moves (Charness, 1978:36). Charness

suggests that it is here that a master chess player uses some plausible

move heuristic to select the best moves for further consideration.

Perceiving this apparent use of pattern recognition by human game

players, Hearst suggests that pattern recognition routines used in

concert with more conventional procedures might produce chess programs

of higher quality than those currently existing(Hearst, 1978:191). The

following proposal calls for the use of two linear machines, in effect

a compound linear machine, to accomplish this.

Proposed Structure for a Compound Linear Machine for Game Playing

It is proposed that a game playing program making use of a compound

linear machine to evaluate moves could be properly trained to play games

well, perhaps in conjunction with other standard game-playing tech-

niques. Any specific machine so structured would be game-specific,

but the general technique could be applied to any arbitrary game. The

compound linear machine proposed would consist of two separate linear

machines operating in concert with move generation and pattern genera-

tion modules. The first linear machine is intended to model the human

14

ability to remember ideas, patterns, and relations of a game. The

second linear machine is intended to model the human ability to gen-

erate plausible moves for investigation.

The first step in using the compound machine for evaluation is to

input a representation of the current board position to both of the

move generation and pattern generation modules. The pattern generation

module produces a pattern vector of the current board (assume all

board patterns have d features). This pattern of the current board

is designated xO. The move generation module produces all possible

next boards for the current board. These possible next boards (assume

L of them) are given as input to the pattern generation module which

generates pattern vectors xl through xL corresponding to the L possible

next boards. Pattern x0 is given as input to linear machine I and

all patterns of the possible boards are given as input to linear

machine 2.

Linear machine 1 is designated the group discriminant machine and

consists of R linear discriminant functions labeled Gl(ix) through

Gr(X). Each such group discriminant function Gi(ix) assigns x to the

ith group if and only if Gi(x) > Gj(x) for all j i, 1 < is j <R.

The pattern io of the current board is given to this linear machine,

and the machine gives as output an index equal to the index of the

group to which i0 belongs. This index is given as input to the second

linear machine.

The second linear machine is designated the move discriminant

machine. It contains R linear discriminant functions, each uniquely

associated with one of the R groups of the group discriminant machine.

The move discriminants of this second machine are designated gl(ix)

15

,.k ~

through gr(x), where gi(x) is associated with the ith group determined

by Gi(i 0) of the group discriminant machine. As stated, the inputs of

this second machine are the pattern vectors corresponding to the possi-

ble next boards associated with the current board, and the index given

as output from the first machine that indicates the group membership

of the current board. Possible next boards are evaluated by evaluating

their associated pattern vectors with the move discriminant whose index

is equal to that input from the first machine. The board picked is

then the jth board such that gl(xj) > gl(Xk) for all k / j and 1 < j,

k < L, and where I is the index received from the first machine. The

move taken from the current board is then that move which results in

the jth next board. Alternatively, the best n (n some number less than

or equal to L) moves would be picked, based on a numeric ordering of

the evaluations of the next board pattern vectors. A standard game

tree search could be conducted from this point, and thus the compound

linear machine could be used to decide which nodes to expand (i.e.,

most promising).

Figure la and lb depict the structure of the procedure just

described. Figure la shows the internal structure of the group dis-

criminant machine, while Figure lb shows the internal structure of the

move discriminant machine.

An underlying conjecture of this proposal is that the pattern

representations of all possible boards form a relatively small number

of linearly separable groups. By separating these groups, the group

discriminant machine mimics human rememberance of ideas, patterns, and

relations of a game. A second underlying conjecture is that the pat-

terns of boards resulting from a given board form two linearly separable

16

-u >

'a C

.4- x EW
ro 0CL --.

xa)
'D E

CCC)

C.)

~ o

o0

-

V))

S--

*0

C.

4-0

4 J M.

V) t

w- 5-2

4J S- 4.J -

CDa
m ui 0

ui cx V))

A&A

Index from Group Discriminant Machine,
activates Ith move discriminant

Move Discriminant I

Xj * jd Selector-- >j

board with

vi* evaluation

XL.Iterative Calculation

of gi(iXj) 1 < i < L

Move Discriminant i

Figure lb. Exploded View of Move Discriminant Machine

18

groups of boards: good boards and what will be called alternate

boards. In separating these boards the move discriminant machine as-

signs a value to each board. The good boards have patterns for which

the value of evaluation function (discriminant function) is greatest.

The moves leading to such boards are identified as good moves.

Thus the second linear machine functions s a plausible move generator.

Chapter V will further explore the viability of using linear dis-

crimination by comparing the complex linear machine approach to other

machine game playing approaches. But first Chapter IV will present a

possible training algorithm for the machine to complete the presenta-

tion of the proposal.

19

IV. An Alorithm for the Application of Linear
Discriminants in Game Playing

General Statement of Algorithm

This section presents a general method by which to apply linear

discriminants in machine game playing. The approach will be to first

state the algorithm used in general terms. The motivation for each

step will then be presented followed in each instance by an example

application. The example will be the game of tic-tac-toe. The reader

should be aware throughout that tic-tac-toe is used simply because it

is well understood and allows attention to be focused on the algorithm

rather than the example game. The algorithm consists of the following

steps:

1. Choose a state space representation of the game.

2. Choose a pattern representation for an arbitrary state in
the state space.

3. Choose or generate a set of training positions from the
state space for which the best move or best next position is either
known or recommended by some expert.

4. For each member of the training set, generate the patterns
associated with the possible next positions (boards) and label them
as to whether they represent good (recommended) boards or alternate
boards. Using a linear discrimination routine, attempt to separate
the two classes of good and alternate boards. If necessary, use the
results to fine tune the pattern representation chosen in step 2 and
repeat this step (4).

5a. For the members of the training set, generate the patterns
associated with the members themselves (as opposed to the patterns of
next positions). Using a clustering algorithm, form clusters of
boards in the training set based on the pattern representations.
Verify that the clusters chosen are "reproducible." These clusters
will become the groups of boards to be separated by a group discriminant
machine.

20

.._ _..

5b. For the clusters chosen in step 5, use a linear discriminant
training method to determine a weight vector for each cluster that will
separate, for each member of the cluster, recommended moves from al-
ternate moves. If separation cannot be achieved, produce results based
on some "best possible" criterion. The resulting discriminant functions,
one per group, will become part of a move discriminant machine.

5c. If step 5b does not produce acceptable results, iteratively
repeat steps 5a and 5b making modifications to cluster membership based
on results "to date" prior to each iteration. Continue until in some
sense satisfied with results.

The procedure described above is more heuristic than analytic. The

following description of each step, with examples, provides further

explanation.

Step 1. Choose a State Space Representation

The motivation for this step is explained in the background section.

An implicit specification of the state space is employed. The exact

form of the specification is dependent on the game but there are some

general guidelines. The state space description should permit easy

computation by the state transformation operators (Nilsson, 1971:18).

Additionally, since the concern here is with a pattern representation

of each state, the state representation should in some sense be easy to

evaluate for features of a pattern.

In studying a game the representation of the state space as a game

tree (actually partial game subtrees expanded from each current board

position evaluated) will be used. The state space operators, the rules

governing legal moves in the game, are used to produce all next states

from each current position. The relative worth of each possible next

state is assigned through evaluation of its pattern representation. The

desired next board is picked as a result of the evaluation.

21

In this setting a linear discriminant function will play the role

of the static evaluation function commonly applied at such points in

game playing programs (Jackson, 1974:129; Slagle, 1971:143-60; Nilsson,

1971:137-40). Discussion of this choice for an evaluation function will

be postponed to the description of step 4.

As an example representation, consider tic-tac-toe. Number the

tic-tac-toe positions as shown in Figure 1. Now represent a tic-tac-

toe state as a lO-tuple in which each of the first nine elements cor-

responds to a block of the game board and the tenth element indicates

which player is to move next. As a simplification, always refer to the

player to move first in the game as X and the second player as 0.

Signify an empty or blank position by using the symbol B. A game

state may then be written as s = (bl, b2, b3, b4, b5, b6, b7, b8, b9,

blo) where each bi, i = 1, . .. , 9, is equal to X,O, or B and blo

equals X or 0. Designate the set of all possible game states as C.

Then S, a subset of C containing all possible start states, contains

a single state designated so with so = (B,BB,B,B,B,B,B,B,X). Define

the set of goal states G as follows: a state is a member of G if and

only if ((bI = b2 = b3 9 B) or (b4 = b5 = b6 9 B) or (b7 b8 = bg # B)

or (bi = b4 = b7 9 B) or (b2 = b5 = b8 9 B) or (b3 = b6 = bg # B) or

(bi = b5 = bg # B) or (b3 = b5 = b7 # B)). Comparison with Figure 2

demonstrates that these definitions correspond to completion of a row,

column, or diagonal by either player.

123

Figure 2. Position Numbering of Tic-Tac-Toe Board

22

XO 00
Oxx x x

board i board j

Figure 3a. Example Boards

si = (X,O,B,B,O,B,O,X,X,X)

si = (O,B,O,X,X,O,X,B,X,O)

Figure 3b. Corresponding State Descriptions for Figure 2a

gl (si)C (X,O,X,B,O,B,O,X,X,O) I

(X,O,B,X,O,B,o,x,x,o),
(X,O,B,B,O,X,O,X,X,O)]

g2(sj) BO,X,O,X,X,O,XB,XXX)

Figure 3c. Application of Tic-Tac-Toe State Operators to States of Figure 2b

Figure 3. State Description Example for Tic-Tac-Toe

2

23

The last definition required is that for the set of state space

operators which transform a given state into one of the possible next

states. Define two operators, gl and g2. Operator g, is applied only

to states in which blo = X with the effect that for some bi = B, bi

is set equal to X and blo is set equal to 0. Operator g2 acts in a

similar manner on states for which blO = 0 with the effect that some

bi = B is set to 0 and blo is set to X. Figure 3 demonstrates the

application of these operators.

Note that if we define the set T, a subset of C, as the set of

terminal states for a game, it may be possible that T # G. That is,

it may be possible that there bre positions which represent a game

that has ended for which there is no winner. If this is possible, it

may happen that a player cannot reach a member of the goal set G as

defined, but may settle for reaching a member of the set T. For any

game in which this may happen, such an alternate goal will be assumed

to have been implied by the choice of a training set (next step). We

therefore need not be concerned with more than the definition of T.

For tic-tac-toe, the terminal set T is defined as the union of the

set G with the set of all boards in which no bi = B. Then in tic-tac-

toe, GCT.

Step 2. Choose a Pattern Representation of a State

After a choice is made for a state space representation of a game,

a pattern representation is required. There are two considerations to

be kept in mind when meeting this requirement. First, an evaluation

should somehow measure the worth of a state with respect to one of the

players. The decision is basically an intuitive one but should be

24

supportable by empirical evidence (Uhr, 1973:91). Consider the follow-

ing examples. A kalah program written by Russell, in which the main

objective could be considered ownership of stones, subtracts the number

of stones owned or controlled by one player from the number of stones

owned or controlled by the other player (Russell, 1964:9). Samuel's

checker program attempted to measure various properties of the checker

board that were considered to indicate "strong" position for a given

player (Samuel, 1959:212). Most chess programs measure and weight

factors considered important in a strong chess position, such as ma-

terial balance, pawn structure, king safety, and center control (Green-

blatt, 1967:805; Gillogy, 1971:10; Slate, 1978:93-101). The approach

to be used here is similar: determine what features of a subject game

are important and use real-valued functions to obtain a measure of

each feature. However, do not assign a coefficient or weight to any

feature (i.e., do not pre-determine any linear combination of the

features). Instead, arrange the value of the functions into an n-tuple

which becomes the pattern vector for an evaluated position. Let later

linear discrimination routines decide on weighting.

The second consideration in board evaluation is that the method

should produce similar pattern representations, perhaps identical repre-

sentations, for similar boards. For instance, in tic-tac-toe there

are four ways in which the second player can take a corner square after

the first player takes the center. But with respect to what consti-

tutes a good third move, these four boards are all basically the same.

Therefore their representations should be similar. A more concise

statement is that a pattern evaluation should be invariant to transla-

tions, rotations, and symmetries of board positions.

25

Consider now the example game of tic-tac-toe. The objective is

for one player to complete a sequence of three in a row before his

oppvnent does. Further consideration will indicate that in reaching

this goal, it is advantageous for a player to have more open rows,

columns, or diagonals than his opponent. Here, open means unblocked

by one's opponent. The ensuing discussion will use this definition

and will use the term combination to refer to row, column, or diagonal

(see Figure 4a). For example, in his use of tic-tac-toe as an example

game Nilsson sets the evaluation of a position equal to the number of

combinations open for player A minus the number of combinations open

for player B. The evaluation is with respect to player A (Nilsson,

1971:139). The evaluation now to be given is similar, but does not

pre-determine the linear combination of the features to be used. Con-

sider five counts; count the number of combinations in which player A

has one, two, or three marks in a row and let these counts become

features one, two, and three respectively. For player B, count the

number of ways in which he has one or two in a row and let these counts

be features four and five respectively (three in a row is not counted

for player B since it represents a game already lost by player A).

The real-valued functions which measure these features then consist

of counting procedures on the possible combinations in the game. The

resultant pattern vector consists of five elements corresponding to

the five features, where the value of feature one is determined by

function one, etc. If a state description is designated si, then the

functions may be expressed fl(si,p) to f5(si,p) where p indicates to

which player the evaluation is referenced. The pattern vector is a

5-tuple.

26

Combination Squares

Number Involved

1 1,2,3

2 4,5,6
1 3 7,8,9

4 5 6 4 1,4,7

7 8 9 5 2,5,8

6 3,6,9

7 1,5,9

8 3,5,7

Figure 4a. Delineation of Combinations in Tic-Tac-Toe

xOO
Xf si = (X,O,O,B,X,B,X,B,B,O)

Figure 4b. Example Board and Pattern for Evaluation

Function Description of
Index, j function fj(sijP) fj(sijO fj(sijX)

1 Counts one-in-a-row (unblocked) 1 I
for player p

2 Counts two-in-a-row (unblocked) 0 2
for player p

3 Counts three-in-a-row (unblocked 0 0
for player p

4 Counts one-in-a-row (unblocked) 1 1
for opponent of p

5 Counts two-In-a-row (unblocked) 2 0
for opponent of p

Figure 4c. Evaluation of Figure 4b Example

Figure 4. Evaluation Data for a Tic-Tac-Toe Board

27

Figure 4 demonstrates an evaluation of a tic-tac-toe board using

the features just described. Inspection of the figure shows that if

the pictured board is evaluated with respect to player 0 the resultant

pattern vector is (1,0,0,1,2). If the board is evaluated with respect

to player X the pattern vector is (1,2,0,1,0).

Step 3. Choose a Set of Training Boards

The process by which a linear machine (a procedure using linear

discriminants) attains the goal of classifying patterns properly has

become known as training. The training process involves first choos-

ing a large number of patterns typical of those the machine must

ultimately classify, and then using the set in some adjustment process

by which the linear machine is trained to classify patterns properly

(Nilsson, 1965:9). The following discussion is concerned with picking

the training set of representative patterns (boards) for a game playing

problem.

The only clear requirement in choosing training boards is that

the set of boards chosen be representative of those to be encountered

in game playing. If specific types of positions in a game are the

primary concern, then the training set might consist of only those

type of positions. The size of the training set must be determined

based on the characteristics of the training environment. If only a

reasonably small number of patterns may ever occur, then all of the

patterns could be used in the training set. In the more usual instance

where the number of patterns expected to exist is finite but large,

the problem is one of making a tradeoff between computation time versus

confidence in results. As an example choice, Samuel used a "reasonable

28

number" of approximately 250,000 board positions culled from a much

larger number in training a checker program (Samuel, 1967:612). This

number is not so large when contrasted to the estimated 1078 possible

checker positions (Jackson, 1974:125).

Again consider the tic-tac-toe example. If rotations, reflections

and symmetries are ignored, there are 15,120 different sequences for

the first five moves of the game. If rotations, reflections, and

symmetries (similarities) are counted only once, the number of possible

positions reduces to a manageable number (Hinrichs, 1979:196). For

instance, there are only three possible first moves: center, side,

corner. From a center opening, there are only two distinct second

moves, five moves from a side opening, and five moves from a corner

opening. The number of possibilities for the first five moves is then

reduced to 3 + (2 + 5 + 5) - 7 • 6 - 5 = 2523. This reduction of

possibilities is warranted since the evaluation of boards is required

to be invariant to translation, rotation, and symmetry. Consider,

then, the following method of choosing training boards for tic-tac-toe.

Since the game is relatively short, take each possible board after a

first move and expand a partial game subtree from it. At each level

in the expansion, if faced with an obvious "move or lose" situation,

expand only the move which avoids loss. Pick as training boards those

boards in the resultant partial game trees which represent a probable

path based on both players making their best move. Some possible

partial game subtrees and chosen boards from following this procedure

are given in Appendix 3. For tic-tac-toe this procedure results in

paths through the state space leading to ties. Since a trained linear

discriminant should also be able to find winning moves, a few additional

29

boards representing a winning path for one side were also added to

the training set. The resultant set contains 38 training boards (see

Appendix 3).

The specific procedure of game tree expansion would of course be

impractical in larger games. In such situations one uses book moves,

defined as those recommended by experts of the game, and chooses a

reasonable number of boards for the training set (Samuel, 1959 and 1967;

Slagle, 1971:143).

Step 4. Attempt to Find a Linear Discriminant Function for Each

Training Board

This step applies linear discrimination to the data built up in

the first three steps. A brief rationale for using linear discriminants

will be followed by a description of the linear discriminant training

procedure used and a brief discussion of an example application for

tic-tac-toe.

To this point in the presentation no justification for the use

of linear discriminants has been given, other than the conjecture

that they might be useful. The basic rationale for their use is that

evaluation functions for game playing are often chosen to be linear for

the sake of simplicity (Slagle, 1971:19). Such choice is justified by

the success of game playing programs that use linear evaluation func-

tions. For instance, Greenblatt's chess program is believed to play

at a "fairly respectable high amateur level in chess (in tournament

play it is ceded [sic] as a class B player, a bit below the Master

classes)" (Uhr, 1973:206). Further support is given by the fact that

in February 1977 the Minnesota Open Chess Tournament was won by another

computer chess program, Chess 4.5 (Whalend, 1978:168). This program's

30

evaluations consisted of linear combinations of evaluated features

(Slate, 1978:94-103), as did the evaluations of Greenblatt's program

(Greenblatt, 1967:805). The use of a linear discriminant thus seems

well justified.

The purpose of this step is to attempt to find for each training

board a linear discriminant function which will separate good moves

from bad moves for that board. In actual application, the separation

attempted is one of boards reached via a good move from boards reached

via an alternative move. This is an equivalent separation for the

purposes of game playing, since each move is associated with a resultant

board. The problem is equivalent to finding a hyperplane, in the aug-

mented pattern space, that separates the two subsets of patterns.

There are a variety of algorithms for solving such a problem. The

algorithm employed is one of six algorithms tested by Slagle (Slagle,

1979:178-83). It was found to be fast and to give central solutions;

central means that the solution hyperplane (whose equation is the dis-

criminant function searched for) is centered between the classes in-

volved if a solution is found. Central solutions are desirable because

the training patterns are only samples and later use of a central solu-

tion is expected to cause fewer classification errors for new samples.

The method is an extension of the algorithms for solving linear inequal-

ities given by Mays (Mays, 1964:465-8) and Chang (Chang, 1971:222-5).

The method is explained in full in Appendix 1. The following paragraph

explains the basic use and result.

The procedure is called the Central Accelerated Relaxation Method,

or CARM. Remember the purpose here is to find a function g(x) such

that g(xi) > 0 if xi is in the class of recommendedboards. Making use

31

of this, create augmented pattern vectors Yi such that yi = (xi,l) if

xi represents a good board and Yi = (-xi, -1) if xi represents an

alternative board. If a matrix A is created in which each row is one

of these augmented pattern vectors, then solving the system of inequal-

ities A - c > 0 for a solution vector c is equivalent to finding a c

such that g(xi) = ET(xi, 1) where gi(x) is the discriminant function

searched for. CARM uses a relaxation method to solve a matrix inequal-

ity for a solution vector.

In application to tic-tac-toe, each set of resultant boards from

a designated training board is evaluated and the associated pattern

vector for each board is augmented. If the board is not a "good"

board, the augmented vector is multiplied by minus one. All generated

augmented vectors are then used to form a matrix A and CARM is used

to find a weight vector that will separate good boards from alternate

boards. The results for all individual training boards are given in

Appendix 3. One board with associated training problem is reproduced

in Figure 5 for illustration. Player X is to move, with the possible

moves being positions 5, 6, or 9. The move to position 5 is the only good

move designated. The pattern vectors associated with boards resulting

from moves 5, 6, and 9 are (1, 1, 1, 0, 0), (1, 2, 0, 0, 1) and

(0, 3, 0, 1, 1) respectively. The resultant training matrix is shown

in Figure 5. The matrix was given to the procedure that implements

CARM and the weight vector shown was determined. In this example

linear discrimination is achieved since there is a linear discriminant

function such that g(xi) > 0 for 3.i a pattern from a good board and

g(xi) < 0 for xi an alternate board.

32

X-x

Figure 5a. Training Board (Reference Number 38)

X lX xjOX JQIXQYLx xox xo-OxI 0 x o011
>xOI >KO . ..O.. X

move = 5 move = 6 move 9

Figure 5b. Resultant Boards

1 1 1 0 0 1

A= -1 -2 0 0 -1 -1

-3 0 -1 -1 -1

Figure 5c. Resultant Matrix of Augmented Patterns where
Negative of Alternate Board Patterns is Taken

WT (0.225, -0.375, 0.824, 0.0, -0.6, 0.225)

g(x5) = ;T . (x5,1) = 0.899

g(x6) = -0.9

g(ix9) = -1.5

Figure 5d. Example Solution Vector

Figure 5. Example Augmented Pattern Matrix and
Solution Vector from Linear Discrimination Method

33

If the function determined were used in actual game playing, the

x picked as best would be that xi which gave the highest value in the

g(xi) evaluation. Therefore, results from linear discrimination at-

tempts will be acceptable as long as g(xi) > g(ij) for all xj, where xi

is any member of the class of good boards and xj is a member of the

class of alternate boards. The importance of this point is that results

may still be usable even if linear discrimination is not achieved.

CARM will (theoretically) provide a solution if one exists, but the

result may be usable even if not a true solution.

Step 5a. Cluster the Training Boards

Reasons for Attempting Clustering. The preceding step of finding

linear discriminant functions for individual boards was designed to

test the usability of the pattern representation chosen earlier. Ob-

viously in games with a large number of possible board positions one

discriminant per board will not be useful. Step 5 is designed to

find groups of boards for which a single discriminant might work. The

conjecture is that there might be a small number of such groups for

even a complicated game.

Clustering is a fairly common approach to problems in which the

underlying structure of a pattern space must be studied. There are a

variety of well documented techniques that may be used. Duda and Hart

(Duda, 1973:211-37) offer a good synopsis while the most complete

reference for clustering is probably Anderberg (Anderberg, 1972). The

approach taken here will be to describe the use of clustering in the

current work without going into an analysis of clustering itself.

The interested reader is referred to the cited material.

34

The conjecture that there might be clusters underlying a pattern

representation of a game is supported by methods used in some game

playing programs. The more successful chess programs which use linear

evaluation functions change the nature of the evaluation function as

the game progresses from opening to middle game to end game (Gillogy,

1971:8-12; Slate, 1978:93-101). The suggestion here is that a pattern

representation of the boards would reflect the game progress, and that

in fact the referenced programs are using different linear functions

for distinguishable classes or groups of boards. Another example is

the kalah program of Russel, which also changes the nature of its

linear evaluation function based on the progress of the game (Russell

1964,9). The problem is therefore one of decided on what basis to

cluster boards.

Choice of a Similarity Measure. The problem of a basis for the

clustering is the common first problem of all clustering attempts. It

is usually stated as the problem of finding a similarity measure by

which to cluster the information at hand. There are a variety of

similarity measures suggested in the literature, most of which are

covered in the references cited earlier. For this case in which game

boards are to be clustered, Euclidean distance is the measure chosen.

Although this similarity measure is often faulted, its use is justified

as follows. The overall problem is one of findinggroups of boards

for which a single linear discriminant can be used. In most games,

the boards that all descend immediately from a common predecessor will

certainly all be very similar. Since the pattern of the board will be

a function of the board position, it is reasonable to expect that

35

patterns for boards descended from a common predecessor will have similar

patterns, These patterns should therefore be close, or similar, in the

sense of Euclidean distance.

Choice of a Clustering Method. Once the choice of a similarity

measure for clustering is made, a choice on a specific routine to be

employed is required. For the case of game board clustering, hier-

archial clustering was chosen. There were two underlying reasons. First,

hierarchial clustering requires no pre-knowledge of possible clusters.

Second, a Fortran subroutine implementing hierarchial clustering was

readily available. The routine used was the OCLINK routine in the

International Mathematics and Statistics Library (IMSL) (IMSL, 1979).

Given a similarity matrix for the data to be clustered, this routine

performs either single-linkage or complete-linkage hierarchial cluster

analysis.

The basic description of hierarchial clustering is as follows.

Given N data points (clusters), form a new cluster by combining the

two closest points as measured by some similarity measure. Record the

similarity level of this new cluster with respect to all remaining data

points (clusters). Repeat the procedure until all data are merged

into a single cluster (IMSL, 1979:OCLINK-2). The OCLINK routine used

permits either single-linkage or complete-linkage hierarchial cluster-

ing. For a distance-like similarity measure, single linkage measures

the similarity between two clusters, p and q, as the minimum distance

between any point in p and any point in q. Complete linkage determines

the similarity measure between clusters p and q as the maximum distance

between any point in p and any point in q. With single linkage cluster-

ing any entity in a newly formed cluster is at most a distance s from

36

its nearest neighbor, where s is the similarity measure of the two (or

more) clusters merged to form the new cluster. With complete linkage

clustering every member of a newly formed cluster is at most a dis-

tance s from every other member in the new cluster, not just the point's

nearest neighbor. Generally speaking, single linkage is incapable of

delineating poorly separated clusters, but it is one of the few cluster-

ing techniques capable of outlining non-ellipsoidal clusters. The com-

plete linkage method generally forms tightly bound groups with a "very

large" distance between groups with respect to a distance-like similarity

measure. This is because the similarity of the two groups under the

complete linkage method is the distance between the two most extreme

data points. The "nearest neighbor" from one group to the next may be

much closer (Anderberg, 1972:238-42; IMSL, 1979:OCLINK-2,3). The de-

cision of which hierarchial clustering method to use must be based on

the data points to be clustered. If there is no fore-knowledge of what

the clusters to be formed may be like, both methods may be tried and

the results compared with respect to the purpose for clustering.

Example Clustering. A similarity matrix was computed for the

unaugmented patterns of each of the thirty-eight tic-tac-toe training

boards. The matrix was used in OCLINK to attempt both single linkage

and complete linkage clustering. The results of the single linkage

clustering are shown in Figure 6 and complete linkage in Figure 7.

The results are presented as dendrograms where the leftmost nodes repre-

sent the initial data points. The joining of two or more nodes into a

new node indicates the formation of a new (larger) cluster. The sim-

ilarity of points within a cluster grows smaller as larger clusters are

formed. For a distance-like similarity this means the distance measures

37

between points are larger. As can be seen from Figure 6, if any clusters

exist they are close to one another and the single linkage method could

not find them. All of the points merged at node 46 are in fact exactly

a distance of one from each other in the pattern space. Figure 7, on

the other hand, shows a clear distinction between possible clusters.

For the purpose of finding groups of boards for which a single linear

discriminant function could be used to find moves, the results from

complete linkage clustering are more useful. The level at which to

decide a distinct cluster is formed is matter of judgement on the part

of the researcher. For dendrogramof Figure 7, an initial clustering

at nodes 73, 66, 69, and 71 was chosen. It is interesting to note that

nodes 54, 53, 50, 61, etc. through 47 were all formed at the same level

and that the similarity measure (distance) at each merger was one. In

Figure 6, thirty-five boards were clustered simultaneously into a single

cluster at that level (node 46). But because complete linkage uses

maximum distance instead of minimum distance, complete linkage goes on

to result in Figure 7, which is strikingly different from Figure 6.

Once initial clusters are picked, the ability to reform the same

clusters should be verified. The exact method used should be based on

the similarity measure used for the initial clustering. The compound

linear machine proposed in this paper would use linear discriminants to

divide the patterns of the training boards themselves into groups.

Therefore the Centered Accelerated Relaxation Method (CARM) discussed

at step 4 was employed in attempting to ensure that the training boards

could be correctly assigned to clusters. The method used was to gen-

erate a training matrix containing an augmented pattern vector for each

board in the training set. For each cluster, in turn, the matrix was

38

greater similarity) less

15 45

14 possible clusters:

38
30 Cl = (7,15)
26 C2 = (18,20)

C3 = (24,28)
20 43 C4 = (12,19)
181 C5 = (21,6)
37 __C6 = (9,22,32)

281 40 C7 = (all but 33,10,11)
24' C8 = all

11
36

29

191 44
121
31
27 46
25
23
17

21 42
61
35

34
13 ___

5

32 47221 39

91

4
2

16
1

8

33

10
3

(" Figure 6. Single Linkage Hierarchial Clustering of Tic-Tac-Toe Boards

39

A&4

greater d9 similarity less

24 73

323
2

29

25 5
20 7
11
326
19

5 5

14

34 4
13

20

26

140

modified so that all patterns of boards assigned to the cluster in

question were positive, but all patterns of boards not in the cluster

were negated. The problem of separating clusters was then reduced to

the problem of solving linear inequalities simultaneously. Thus, one

execution of CARM is required for each cluster, and a weight vector

becomes associated with each cluster. The resultant weight vectors

from this step will be called group discriminants. It should be obvious

that the attempt made here is a separation of multiple classes, in-

stead of just two as in the case of move discrimination.

The initial attempt at this method resulted in four class dis-

criminants that correctly classified thirty-four out of thirty-eight

boards. Attempts at improvement of this performance were postponed

until results from initial attempts to find move discriminants for

each class were made.

Step 5b. Find a Move Discriminant for Each Class

In this step, the purpose is to find a linear discriminant for

each class of step 5a such that the linear discriminant can success-

fully separate the good moves from the alternate moves for all boards

assigned to the cluster. The discriminant function resulting from

this step is referred to as the move discriminant of its respective

class.

The discriminant training method used at this step is again the

Centered Accelerated Relaxation Method, CARM. Pattern vectors for the

training matrix consisted of the patterns representing all next possible

boards for all of the training boards in a given cluster. The patterns

41

were augmented and as in step 4 the augmented patterns representing

alternative moves were negated while those representing good moves were

left positive. This procedure was repeated for each cluster so that

one move discriminant per cluster was searched for.

The initial attempt at finding move discriminants was made on the

same clusters for which group discriminants had been searched for in

step 5a. The move discriminants returned by CARM successfully evaluated

thirty-four out of the thirty-eight training boards of the four groups.

As previously suggested, improvement of the move discrimination attempts

should be done in tandem with improvement of the group discrimination

attempts, since a "working" move discriminator for a given group is of

little use if the boards of the group cannot be recognized. This leads

to the iterative improvement part of this step.

Step 5c. Iteratively Improve Performance of Discriminants

The purpose of this step is to attempt improvement of the group

discriminants and move discriminants found in step 5a and 5b until some

"acceptable" level of performance is achieved.

There is no clear method by which groups could be rearranged to

guarantee improvement in performance of either move or group discrim-

inants. The approach to be taken should be a function of the patterns

being discriminated and of the current performance of the discriminants,

but beyond this guide, intuition plays as large a role as any other

algorithm. For the case of tic-tac-toe, improvement was sought as

follows.

Refer to Figure 8. Each column of the figure represents the groups

picked at each attempt at improvement. The leftmost column represents

42

%T C

03 00

co o C)
a)

00

S-

'4-

0

(Am

CIO 4-a)

E

-~s
-t0

I'.2

400

430 a

the initial groups picked in step 5a. The first line of each box repre-

senting a group gives the group identification number assigned and the

number ofmember boards. The second line indicates how many of the

boards were misclassified, i.e., assigned to another group by the group

discriminants found at that stage, and will also indicate the number

of boards in the groups for which the groupmove discriminant, as

determined at that stage, could not successfully "pick" a good move.

The memberships of the initial groups of column one may be determined

by comparing the identification number of a group to node numbers in

the dendrogram of Figure 6. In moving right across the figure, the-

connecting arrows indicate the reassignment of boards from one group to

another for the next stage of attempted improvement. The numbers below

each column indicate the total number of boards misclassified (assigned

to the wrong group) and the total number of boards for which a wrong

move (an alternate instead of a good move) would be picked by the

move discriminants of each stage.

In going from the initial clustering to the second clustering

attempt (column 2, Figure 8), boards were assigned to clusters based on

how the group discriminants of attempt 1 would have assigned them.

For instance, the group discriminants of attempt 1 assigned boards 12

and 19 to cluster 73 instead of cluster 69. Therefore they were

"moved" to cluster 73 and the cluster was renumbered 76 to distinguish

it from the original cluster 73. All of the boards in cluster 66 were

correctly classified as members of that cluster by the group discrim-

inants of attempt I and therefore that cluster was left as is for

attempt 2. After the reassignments indicated in Figure 8, steps 5a and

5b were repeated for the groups indicated in column 2 of the figure.

44

As indicated, the new assigned clusterings resulted in groupdiscriminants

that correctly classified thirty-six of thirty-eight boards and in move

discriminants that picked good moves for thirty-four out of thirty-eight

boards.

For attempt 3 the reassignments indicated by Figure 8 were again

made based on cluster assignment of groups by the group discriminants

of the previous attempt. As a result, thirty-seven out of thirty-eight

boards were correctly assigned to groups but the move discriminants of

each group now picked proper moves for a total of only thirty-one

boards. In attempt 4, board 4 was reassigned based on the group dis-

criminants but.boards 10 and 16 were reassigned (even though group

membership for them had been correctly determined) because the move

discriminators of their respective group could not find a proper move

for them. They were assigned based on a judgement as to which other

move discriminant came "close" to picking the proper move for them. In

attempt 5, board 5 was again reassigned based on where the group dis-

criminants of the previous attempt had classified it.

After the five attempts made, there were many possibilities for

possible improvement that suggested themselves. For instance, the

three boards in group 85 for which the move discriminant of group 85 did

not work could perhaps be broken out into an entirely separate group.

Although not indicated in the figure, in group 84 it is board 10 which

is incorrectly classified in both attempts 4 and 5. It could be reas-

signed also. However, tic-tac-toe was used here only as an example

game by which to help describe the techniques suggested. The decision

was made to leave its study after five attempts and to attempt a more

complex and interesting game.

45

One more comment should be made on this step before closing this

discussion. The training algorithm used, CARM, requires the user to

supply an initial guess as to the value of the coefficients in a weight

vector. In all cases of applying CARM to tic-tac-toe, the initial guess

provided consisted of coefficients all set equal to zero. The intent

was to assure that the possible performance of the procedure was not

prejudiced, so that any results could be considered true learning by

the program. In attempting iterative improvements after the initial

attempts at clustering and move discrimination for the clusters, it

may have been better to use as an initial guess for the discriminant

at each step a weight vector determined in the previous attempt. Addi-

tionally, it is possible that a different method of determining initial

cluster membership, e.g., "nearest proto-type" assignment, might have

provided better clustering results. The only reply to possible question-

ing along these lines is that time considerations suggested continuing

on to a more interesting game and that the purpose of using tic-tac-toe

was to provide an easily understood example (and easily performed de-

bugging of code). Success in tic-tac-toe was not a goal.

46

V. Comparison of the Compound Linear Machine Approach
to other Game Playing Approaches

Overview of other Approaches to Machine Game Playing

There are two basic approaches to machine game playing that appear

in the literature. The first approach is commonly known as a Shannon

approach as it involves game tree generation and search used with a

static evaluation function for evaluation of "end" nodes as proposed by

Shannon for chess playing (Shannon, 1950). The second approach will be

called the forcing state approach after its primary characteristic

(Koffman, 1967; Koffman, 1968; Banerji, 1970; King, 1971). The pro-

posal os this paper falls under the Shannon approach classification and

detailed comparisons will be made in this area. Before beginning a

comparison with the forcing state approach will be made.

Comparison to Forcing State Approach

Several researchers at Case Western Reserve University have in-

vestigated a method of machine game playing exhibiting learning that

differs from the classical learning programs such as Samuel's checker

program. The approach is to write a program that memorizes patterns

that lead to wins. The program then uses these patterns itself to win

and defends against them to prevent losses. The program is written to

recognize forcing states, defined as configurations for which there

exist a sequence of offensive moves ending in a win and for which the

defensive player can make only one play in each case if he is to avoid

loss (Koffman, 1968:13). The program takes the record of each game it

loses and "plays it backward", storing the sequence of moves that led

47

directly to the loss and also the pattern on the game board directly

responsible for this sequence of moves. It then uses these forcing

patterns and moves in later play. There is more detail to the exact

learning procedure and approach, but this is the basic method used

(Koffman, 1967:55-67; Koffman 1968:13-4; King, 1971:18-26, 52-61).

The method has only been applied to the class of games known as posi-

tional games, but it could be used in any instance in which the existence

of forcing sequences and states is suspected (a positional game is

fully defined by Koffman in his work, but examples are tic-tac-toe

games of varying dimension, Shannon network games, and Go-Moku).

This type of learning program is not directly comparable to a

linear machine approach, but some general comments can be made. The

forcing state approach is quicker and more rational in some cases, as

suggested by the authors who have written of it. The approach would

seem justified any time the game is reasonably finite in the sense that

the possible number of positions is comparatively small. However,

consider chess. As documented elsewhere in this paper there are probably

10120 possible chess positions. It is assumed that some of these

positions may represent forcing states or the beginning of a forcing

sequence. However, the forcing state approach apparently requires the

storage of all known forcing sequences. Storage requirements apparently

rise linearly (or nearly so) with the number of such sequences (Koffman,

1967:78). While some savings in this area are proposed by Koffman,

time and memory requirements are still proportional to the number of

forcing sequences found. It is reasonable to assume that in complex

or large games such as chess the number of such sequences would be very

large if they do exist.

48

The compound machine approach proposed in this paper also requires

large amounts of memory and storage in the training mode, but would not

in the playing mode. The knowledge concerning what type of board posi-

tion existed at each point in the game, and the proper type of response

to make in each situation, is very efficiently stored in the discrim-

inant functions of the two machines. A program to play a game would

need store only the group discriminants to be used in deciding to which

group a board belonged and the move discriminant associated with that

group. It is contended by this author that a search for a proper move

consisting of board evaluations with the discriminants would be at

least as efficient as searching through stored forcing states for a

match on the current board. If the number of forcing states is quite

large the discriminants could represent a more efficient method.

In all fairness, it is noted that this is a cursory examination

and that the forcing state approach does have strengths not discussed.

However, for complex games the comparison seems justified and the ap-

proach of Shannon seems more promising.

General Description of Shannon Approach

The most common approach to game playing by machine is probably

that suggested by Shannon in 1949. Shannon describes two possible

strategies. A Type A strategy involves considering all possible varia-

tions from some current position out to some definite number of varia-

tions. This basically involves a game subtree expansion out to some

predetermined level. The end nodes of this expansion are then eval-

uated with some static evaluation function that assigns a value to

each such end position. The choice of a next move is based on some

49

assessment (usually maximum value) of these evaluations. In the Type B

strategy "forceful" variations are expanded as far as possible, and

positions are only evaluated if they are "quasi-stable" (i.e., if there

are no imminent captures or losses). The Type B strategy also performs

search tree pruning at each level of expansion to speed tree search.

That is, some number of possible expansions from a position are elim-

inated from further consideration for expansion through use of some pre-

determined rule. A common rule is to expand only those n next positions

having the highest value assigned by a static evaluation function, where

n is some pre-determined number. The end positions resulting from this

expansion strategy are then evaluated by some static evaluation function

and a decision on which move to make is again based on these evalua-

tions (Shannon, 1950). Although these approaches were proposed for a

chess program, they have been applied to a variety of games. The com-

pound linear machine proposed in this paper can be characterized as an

implementation of a Type B Shannon strategy, where the move discriminant

is used to prune the tree before further expansion.

Comparison to Non-Learning Shannon Type Programs

Although there are several successful Shannon type game playing

programs, the majority of them do not learn. This type Shannon program

will be compared to the compound linear machine approach first. The

best examples are probably the series of chess programs developed by

Slate and Atkin at Northwestern University (Slate, 1978) and the Green-

blatt chess program (Greenblatt, 1967). Both of these programs use a

linear evaluation function to evaluate positions, and both change the

specific nature of the terms evaluated depending on the state of the

50

game (beginning, middle, end, or the like). (The approach of these

programs was presented in more detail in discussion of step 4 of the

algorithm of Chater IV.) The terms evaluated by these programs are

equivalent to the feature evaluation that is performed in constructing

a pattern for evaluation by a linear discriminant. A linear combination

of the terms used by Greenblatt and Slate is equivalent to computing

the dot product of a weight vector in a linear discriminant with a

pattern vector. The difference lies in the fact that in the approach

exemplified by Greenblatt and Slate, the programmer determines the

coefficients to be used. In the linear machine approach the coefficients

are determined by a training algorithm that is guaranteed to find a

solution that will separate good moves from alternate moves if such a

linear solution in fact exists. .This separation is implicitly assumed

by the other approach, but the intuitive and heuristic methods used

there to pick coefficients does not guarantee finding proper coefficients

even if separation is possible.

As explained in Chapter IV in the discussion of step 3 of the

algorithm, the Greenblatt and Slate programs vary their evaluation func-

tions depending on the progress of the game. The thought here is that

different features vary in importance as the game progresses. This

concept is also present in the compound linear machine formulation.

The first linear machine, the group discriminant machine, is expected

to find classes of similar boards for each of which a different weight-

ing of coefficients in the evaluation function can be found. It is

contended that this allows the compound linear machine to adjust its

play to different "phases" of a game and to weight coefficients ap-

propriately for each phase.

51

Both approaches assume distinguishable groups of boards, although

in the Greenblatt and Slate programs decision groups are based on a

generally accepted division of the game of chess into discernible phases.

In the compound machine approach the machine learns phases for itself

in the training algorithm. These may or may not be the phases usually

discerned by humans. To summarize, it appears that the compound linear

machine is merely a different implementation of a common technique.

The major difference is that both the group discriminants and move

discriminants of the proposed machine are trained; thus the machine

can be said to learn the proper evaluations for itself. The type

Shannon program described here does not.

Comparison to Samuel's Shannon Type Checker Program

The most successful and well known Shannon type program that learns,

and one of the few such learning programs, is A . Samuel's checker pro-

gram. Samuel's original checker program was a classical Shannon pro-

gram of Type A in which the evaluation function was a linear polynomial.

The initial learning procedure for the program consisted of rote-

learning in which all boards "seen" by the program were stored in a

normalized form so that the program could recall tree expansions and

evaluations from memory rather than have to expand trees and recompute

positions it had seen before. The program was allowed to forget

(basically purge from storage) boards not used over some period of time

and to periodically update its memory with new boards. A maximum limit

was also set on the size of its memory in terms of the number of boards

that could be stored. The program learned to play a good beginning

and end game, but middle game play was not as good. Samuel evaluated

52

... ..

the program as being a "better-than-average novice, but definitely not

an expert." Further, to improve mid-game play it was estimated that

the program would need access to at least twenty times more boards than

the 53,000 already stored (Samuel, 1959:212-8). Samuel then turned to a

generalized learning technique that is directly comparable to the com-

pound linear machine approach proposed in this paper.

Samuel's generalized learning technique for this first checker

program consisted basically of having the machine play itself with dif-

ferent versions of a linear polynomial. The machine then updated the

coefficients of the polynomial based on which version of the program

performed better. The terms in the polynomial are exactly the features

proposed for use in a linear discriminant approach. The coefficients

are equivalent to the weights contained in the weight vector of a

linear discriminant. The details of the coefficients in the checker

program are to be found in Samuel's paper (Samuel, 1967:613), but they

can be generally described as correlation coefficients that measure how

well the program does in choosing book moves. A total of thirty-eight

terms were included in the program, but the program used only sixteen

at a time. The sixteen with the highest correlation coefficients

(highest weight) were chosen for use at any given time (Samuel, 1959:

218-20). The important point here is that the linear polynomial used

is directly comparable to a linear aiscriminant. The coefficients and

terms of the linear polynomial could be expressed as the dot product

of a coefficient vector and a pattern vector, in which the features of

the pattern vector would be equivalent to the terms of the polynomial.

The use of only the sixteen terms with the highest coefficients is only

a minor difference. The major distinction between Samuel's approach and

53

Allm mmmm m Im nmm mm m "~ m mm

the use of linear discriminants to pick moves in the proposed linear

machine is that Samuel's coefficient modification was heuristic and

no convergence theorms exist. The linear machine approach is guaranteed

to find a linear solution if one exists. (Samuel's approach implicity

assumes a linear separation of good moves from other moves while the

linear machine approach is explicitly based on this assumption.)

Samuel's work did not stop at this point. Later versions of the

program using linear polynomial evaluation used a Shannon B type

strategy to prune branches of an expanded game tree from further con-

sideration. The pruning consisted of investigating only those branches

leading to boards receiving high values in evaluation. Efficient tree

search techniques were used also, but these are techniques that can be

used in any program regardless of the nature of the evaluation function.

As many as forty terms (equivalent to features) were used at different

points in the evaluation with twenty apparently being an optimum number.

The evaluation function itself was still a linear polynomial (Samuel,

1967:602-10). The comments made previously concerning the comparison of

Samuel's polynomial evaluation and a linear machine still apply to this

extension of his approach. In finding a set of twenty terms to be used,

Samuel basically used a trial and error approach. In the linear machine

formulation all terms deemed of possible importance could be included

during the training phase, and the mach{ne would "learn" which terms

were important based on the relative values of weights assigned to each

term in the weight vector determined by a training procedure. Apparently

Samuel did not try to attune different versions of his linear polynomial

to different phases of the game. The use of a group discriminant to-

gether with a move discriminant attuned to each group seems to offer

54

better hope of success than Samuel's approach at this point of his

work.

Samuel tried one more approach which proved to be more effective

than either rote learning or use of a polynomial evaluation function.

The following summarization of the technique is adopted from Jackson

(Jackson, 1974:140-6). The parameters (terms) used in previous attempts

were maintained, but possible values were restricted to a small range

of values symmetric about zero. The parameters were divided into six

distinct groups with the possibility of a parameter belonging to more

than one group. Each group contained four parameters. The groups were

designated signature types and a table of all possible combinations of

values for the parameters of each signature type was constructed. A

signature table was thus created where each combination of parameters

had an entry in the table. A value was determined for each signature

type (table entry) and these values ranged over a symmetric set of

values for each table. Thus each signature type was evaluated by table

look-up and the resultant value was the function evaluation. These

signature table values were then used as input terms to a second level

of signature tables, whose values were in turn input to a third and

final set of signature tables. Jackson summarizes the evaluation of a

given board as follows:

1. Determine the values of each of the parametric functions
for the particular board configuration of interest.

2. Enter the first level signature table and determine the
evaluation assigned to each instance of the parameter
group determined in step 1.

3., Using evaluations from the first level, look in the
second-level signature tables for the evaluation of the
configuration.

55

4. Obtain the final evaluation by look-up in the
third level table (Jackson, 1974:141).

The values of each of the entries in the third level signature table

were a form of correlation coefficient that measured how well the pro-

gram using this approach did in choosing a book move during training

runs. Values in the first two levels of the signature table approach

were adjusted to result in these values once they were determined.

This consisted mostly of a normalization to scale. This evaluation

method allows construction of a non-linear evaluation function

(Jackson, 1974:146; Samuel, 1967:612-3), but the procedure may still

be compared to training of a linear machine using book moves. In the

training algorithms for linear machines, weight values in a weight

vector are adjusted until the dot products of "recommended board"

pattern vectors with the weight vector are larger than the dot products

of "alternate board" pattern vectors with the same weight vector. In

the case of linear machines this results of course in a linear function

while Samuel's is non-linear. The difference lies not in the approach

as much as it does in the type of decision regions that can be deter-

mined.

There is reason to believe that a linear machine approach may be

able to do as well as the non-linear signature table approach. Consider

that after training, the signature table program predicted book moves

with an accuracy of 48%. This percentage is based on a static evalua-

tion of a given board with no tree search. With this accuracy used in

conjunction with a tree search, the program follows book moves to a

much greater extent (Jackson, 1974:146; Samuel, 1967:615-6). The

strength of the program seems as much dependent on tree search as

56

evaluation. Apparently, then, training of a linear machine could also

lead to a program that plays well if the linear machine could predict

book moves with at least 48 accuracy.

To this point the comparison with Samuel's signature table approach

has applied to the move discriminant machine of the compound linear

machine. Jackson points out in his review of Samuel's work that the

program eventually used six different signature table hierarchies, each

attuned to a different phase of the game. This apparently resulted in

some improvement in play (Jackson, 1974:141). This approach is also

embodied in the compound linear machine proposal in the form of the

group discriminant machine. As has now been suggested repeatedly, the

group discriminant machine may be able to assign boards to particular

groupings for each of which a different move discriminant function would

be found.

The primary difference in the approaches, then, seems to be that

the signature tables of the checker player are capable of implementing

a non-linear evaluation function. Considering the "accuracy" of this

function by itself, there is reason to believe that a linear decision

function may be able to do as well.

Comparison to an Advice-Taking Shannon-Like Program

This section compares the compound linear machine proposal to an

advice-taking program written by Zobrist and Carlson. The authors

imply that although the program uses many of the same techniques as

the Shannon type strategies, it is not a Shannon type program. The

following description of their appraoch is based on an article published

in Scientific American which described their work (Zobrist, 1973).

57

The most distinctive, and unusual, feature of the program is the

method by which it learns to play chess. Zobrist and Carlson developed

a chess specific language in which the program could be directed to

evaluate what the authors called patterns. Careful analysis of their

patterns indicates tha. the patterns are what would be termed features

in a more standard pattern recognition approach. Two examples of their

patterns are a pattern "devoted to getting knights and bishops off the

back rank in the opening" (Zobrist, 1973:96) and attack patterns of

different pieces. These are the same types of things considered by the

standard Shannon type programs such as the Northwestern chess program

(Slate, 1978:92-101). The method of making the program aware of these

patterns is unique, however. A chess master, in this case Charles I.

Kalme, gives the computer advice via a computer input terminal using

the chess specific language developed by Zobrist and Carlson. The

program then stores these patterns for later use. The claim is made

that the computer thus learns proper evaluations in the same sense

that a child learns from an expert teacher. A weight function exists

in the language by which the computer can be told how to calculate

values for snapshots of the patterns, where a snapshot is a particular

instance of a pattern that is stored for later reference. The teaching

can be done at any point in program execution but appears to usually be

done prior to actual game playing. In actual play the program makes its

first few moves of the game by selecting from stored book openings.

After about a half-dozen moves it switches to a thinking mode. In

this mode the program calculates the representation of the current

chess position, and then applies the stored advice (patterns) to take

between 1000 and 3000 snapshots of pattern instances. These are coded

58

Aft

and saved. These snapshots are not only of the current position but

include data on possible positions that may exist after move and counter

move. The program then chooses the ten best moves based on an evaluation

of the snapshots stored, and performs a standard tree search or look-

ahead procedure. At each stage of the look-ahead the same culling of

nodes (selection of ten best) takes place. The claim is made that the

program has to examine far fewer moves than programs of the Shannon

type do.

Consider this program first in contrast to the standard Shannon

types. The evaluation of moves consists of giving values to features

and using a combination of these values to find a value for a position

or move. While the method used is not static in the same sense as most

Shannon program approaches, the use of information about possible future

positions in the evaluation function does not move the program out of

the Shannon class. In fact Shannon mentions in his original proposal

that such terms could be included in the evaluation function, although

he suggests use of a tree search (Shannon, 1950:262). Additionally,

the pruning of the tree search to the ten best moves is no more than an

application of a Shannon B type strategy. The play of the program

seems to be Shannon type. Therefore in method of play the Zobrist and

Carlson approach compares to the compound linear machine approach in

the same manner as other Shannon programs do.

Now contrast the learning exhibited by this program to that which

should be possible for a compound linear machine. The program does not

learn evaluations or features for itself, but applies those it has

learned from some master (external source). This is not learning of the

type displayed by linear machines. Rather it is suggested that this

59

* _ ____

type of learning is no more than an efficient and rapid miethod of

coding an evaluation function. As Zobrist and Carlson claim, it is

much quicker than the standard programming approach, but it does not

seem that it can accomplish any feat a standard coding approach cannot.

It is probable that there is a good chance for the Zobrist and Carlson

approach to choose proper features for evaluation since a chess master

may input them himself, but this is merely efficient commnunication of

knowledge rather than an advance beyond the Shannon approach.

In summnary, the Zobrist and Carlson approach seems to be a Shannon

type program with a more efficient method of coding the evaluation

function. The accuracy of its evaluation will depend upon a judgemental

decision on the part of the person who teaches it patterns. There is

no guarantee that these evaluations will be accurate even if proper

features are chosen. The dual linear machine approach is also a Shannon

type program and one in which the coding of an evaluation function may

be more difficult. However, the training algorithms for linear machine-

offer a method by which they may learn proper evaluations for themselves

based on some training set specified indirectly by experts through book

moves. These comparisons apply to the move choice made by both ap-

proaches. It should be noted that the Zobrist and Carlson program may

be made sensitive to the phase of the game through the method in which

its patterns are described. It can therefore adjust its play, that is,

its evaluation. This capability in the compound linear machine approach

is a function of how well the group discriminant function can perform

in finding groups of boards which may have a relationship to game phase.

Since this training phase is overseen to some extent by persons involved

with the program, it seems that any chess knowledge available could be

60

included in its evaluation by means of code. Therefore the compound
linear machine approach is comparable to the Zobrist and Carlson ap-
proach. Only experimentation will reveal which may work better.

61

VI. A Compound Linear Machine for Chess

Chapter Overview

This chapter describes the creation of a compound linear machine

for use in machine play of chess. The algorithm described in Chapter

IV is used to create and train the machine. The application of each

step to the game of chess is described. Work is restricted to evalua-

tion of chess boards only; no actual attempt to play chess was made.

Results for a small set of training boards are given. The success rate

on this training set is discussed in light of known theory on error

rates for training sets in pattern recognition problems.

Description of Algorithm Application

Step 1. Choice of a State Space Representation. The state space

representation chosen for chess contains the minimum information needed

to play a complete legal game of chess. The state representation is

almost an exact parallel of the definition of a chess position that

Shannon suggested would be necessary for machine play of chess (Shannon,

1950:257-8) and also closely parallels the position description recom-

mended for computer chess programs by Frey and Atkin (Frey, 1978d).

The state description consists of the following pieces of informa-

tion:

1. The current position of all pieces on the board;

2. The side whose turn it is to move;

3. A statement concerning whether kings or rooks have yet
moved for determination of castling possibilities;

62

4. A statement of the last move made for determination
of the possibility of en passent capture;

5. The number of moves made since the last pawn move or
capture of any piece for determination of possible
stalemate by the 50-move rule;

6. A statement concerning the past sequence of moves
when repetition occurs for determination of possible
stalemate by repetition.

Elements 2 through 6 of the state space description are self-explanatory

and could be stored as boolean values or lists of squares and pieces.

Further delineation is made for the description of a board position.

Let Pi denote square content where the index i corresponds to one of the

board squares as numbered in Figure 9 and pi takes on a value indicating

the contents of square i as indicated in Table 1. The board description

can then be expressed as a 64-tuple (Pl, P2, ., P64) where each Pi

indicates the contents of a board square. The restrictions on the

possible values of this 64-tuple (for example only one pi may equal WK

for white king) will be left implicitly defined by the rules for the

game of chess. Note that information concerning possible check or

checkmate is implicitly expressed by the board position but could be

included as a seventh element in the state description.

The set of state space operators will not be defined explicitly

but is embodied in the rules for chess. The set consists of those

operations which are legal moves (proper movement of a single piece to

an empty square or one containing an opponent's piece or castling).

The obvious effect of an operator on a state is to change it to a state

in which the side to move has changed, the 64-tuple describing the board

has been updated as necessary (requiring change to two of its elements),

63

Values for pi Piece

MT empty square

WP white pawn
WN. white knight

WB white bishop

WR white rook

WQ white queen

WK white king

BP black pawn

BN black knight

BB black bishop

BR black rook

BQ black queen

BK black king

Table 1. Chess Piece Notation for State Space Description

Black

57 58 59 60 61 62 63 64

49 50151 52 53 54 55 56
41 42 43 44 45 46 47 48
33 34 35 36 37 38 39 40

25 26 27 28 29 30,31 32
17 18 19 20 21 22123 24

91011 12 13 14 15 16
S21 3 45678

White

Figure 9. Numbering of Squares for a Chess Board

64

appropriate update of the status of kings and rooks as affected by the

move has been made, adjustment of the count for the 50-move rule has

been made, and adjustment of stored information concerning position

repetition has been accomplished.

The set of goal states for chess is specified as those states in

which one player is checkmated or a condition of stalemate exists.

This is also the set of possible terminal states and therefore the set

of goal and terminal states for chess are identical. Note that the

type of goal state reachable from a current position (checkmate of the

opponent or stalemate) will be dependent upon the current state. If

checkmate of the opponent is a reachable condition a state indicating

checkmate will be the goal. If checkmate is not acheivable, stalemate

is the goal. The definition of a terminal state is somewhat fluid (as

is goal state definition) due to the possibility of stalemate by the

50-move rule or by repetition. The membership of a state is therefore

dependent on as many as 49 preceding states. This condition is easily

countable, though, and does not change the basic definition for member-

ship of a state in the terminal and goal set.

The preceding description of a state for chess, a set of state

operators, and a goal set provides an informal definition of the game

state space which is adequate for use in designing move generation

routines and pattern training sets for a compound linear machine. In

the following steps a simplified version of this complete state space

description will be used. Deviations and the reasons for them will be

explained at the point of occurrence.

65

Step 2. Choice of a Pattern Representation for a Chess Board. The

pattern representation chosen for chess was selected based on those

elements or features of the game which are generally deemed important.

Opinion on the exact nature of these elements varies from expert to

expert but Fine and Reinfeld represent a good sampling (Fine, 1952;

Reinfeld, 1946). Additionally most published works on computer chess

contain an analysis of what the author of the article found to be recom-

mended features (Slate, 1978; Whalend, 1978; Zobrist, 1973; Frey, 1978c,

1978d, 1978e, 1979; Gillogly, 1971; Greenblatt, 1967). Analysis of the

cited sources indicates that the important features were summarized

by Shannon in his article and that most current chess programs use some

subset or expansion of these (Shannon, 1950:274). The most successful

implementation of these features seems to be that used by CHESS 4.7

and its predecessors. This analysis is based on the fact that versions

of this program have several times been the United States Computer

Chess Champion and the International Computer Chess Champion (Newborn,

1975; Frey, 1978b). Therefore the final selection of features for in-

clusion in a pattern representation for a chess board position was an

adaptation of the evaluation function described for version 4.5 of the

Northwestern chess program (Slate, 1978:93-101). The number of features

used totaled 14. The nature of the features is given in the following

paragraphs (the exact description of each feature evaluation may be

found in procedures EVPAWNS and EVBRDFTRS of the chess program in the

appendices).

The pattern representation for chess consists of seven basic

features with an occurrence of each of these features for both Player,

66

whose side it is to move, and Opponent. Features one through seven of

the pattern vector are the features for Player and features eight

through fourteen are the features for Opponent. Features one through

seven compare respectively with features eight through fourteen in

terms of which basic feature is represented. These basic features are

now described.

Features one and eight are a measure of the total material power

of each side in terms of piece values. The values assigned to each

piece are one tenth of those used by CHESS 4.5 (Slate, 1978b:94).

This is because the values of the other terms adopted from CHESS 4.5

seldom total more than 1.5 times the value of a pawn. It was felt

that such a large disparity between feature values would definitely

affect the behavior of a linear discriminant's training algorithm.

Slate and Atkin use such high evaluations for material because it is

generally accepted as the most important factor in chess. In the appli-

cation of this paper smaller values were used in the belief that if they

deserved greater weighting, the linear discriminant function achieved

by the training procedure would assign an appropriate weight. Overall

the attempt is to let the machine learn for itself if a large weighting

for material is justified. The feature used is a sum of values for each

piece of a side according to the following scale: queen = 90, rook =

50, bishop = 35, knight = 32.5, pawn = 10, king = 0. Although the king

is not given a value, he is not ignored. Another feature is totally

devoted to a measurement of terms relating to the king.

Features two and nine are an evaluation of the pawn structure for

a side. The feature is the sum of several terms. A negative value is

67

assessed for each doubled pawn (a pawn is doubled if there is another

pawn of the same side in the same file). The assessment is made for

each of the pawns involved and if there should happen to be three pawns

in a file the assessment would be made three times. A negative value is

assessed for each isolated pawn (no pawns of the same side in immediately

adjacent files). Passed pawns (ones for which no enemy pawns are lo-

cated in the same file ahead of the pawn or in adjacent files ahead of

the pawn) are given a positive value that is a rather complicated func-

tion of how far the pawn has advanced, how well it is protected by its

own side, and how well the opposite side controls the square immediately

in front of the pawn. The exact nature of the terms making up the sum

for this feature may be found in procedure EVPAWNS of the chess program

in the appendices. The description given here should be sufficient to

indicate the, type of board considerations involved in the pawn structure

feature.

Features three and ten are a knight feature and consist of a sum

of terms involving mobility and development. A subtraction is made

from the feature value for each knight of a side that is still on the

back rank. A reward (addition to the feature value) is given for

closeness of each knight to the center of the board. Closeness to the

opponent's king is also measured and a negative value is assessed which

grows smaller as the knight gets closer to the king. Each term is

evaluated separately for each knight.

Features four and eleven are bishop features. A bishop is penalized

if it is still in the back rank. It is given a value for square con-

trol which increases as the number of squares controlled increases. A

68

square is controlled if it is directly in line of the bishop's movement.

Therefore a square reachable by the bishop and containing any piece of

either side is controlled by the bishop as are the intervening empty

squares. The value of these terms is found for each bishop of a side

and added to the feature.

Features five and twelve are rook features. As with knights, rooks

are assessed a negative value for distance from the opponent's king.

The assessment decreases as the rook gets closer to the king. Rooks

are given a positive value for square control which increases as the

number of squares controlled increases. Doubled rooks (two rooks of

the same side in the same rank or file) are given a bonus. Each of

these terms, including the doubling term, is assessed separately for

each rook and is added to the rook feature for the appropriate side.

Features six and thirteen are queen features. The queen is given

a positive value for square control that increases as the number of

squares controlled increases. She is also assessed a penalty for dis-

tance from the opponent's king in the same manner that knights and rooks

are. The penalty decreases as the queen comes closer to the enemy king.

These two terms are added together to find the feature value.

Features seven and fourteen are a king safety term. The king is

given a bonus if he is in one of his corner squares (defined as queen

rook I or 2, queen knight 1 or 2, king knight 1 or 2 and king rook 1 or

2, which for white would be squares 1,9,2,10,7,15,8 or 16 respectively

in Figure 9). A term is also calculated which gives a measure of how

well the king is guarded by his own men with of course high values for

being well guarded and low values for being unprotected. The king is

penalized for being in check or for having adjacent squares under enemy

69

A&

attack. These terms are all added to achieve the feature value for

king safety.

The fourteen features described comprise the pattern vector for

chess. Note that since each feature is a function of several terms,

the linear machine that will be constructed using this evaluation will

be a D-machine as defined in Chapter II. There are other features

which could be included or other arrangements of the terms chosen that

might have been used. The justification for the arrangement used is

that in using these terms in linear combination CHESS 4.5 does well,

and therefore the choice made should be a good starting point from

which later variations can be attempted.

Step 3. Choice for a Training_ Set. The choosing of a training set

began with the elimination of certain types of move from consideration.

For all boards, it was decided that en passent captures and castling

would be ignored. The justification here is that these two types of

moves represent special cases rather than typical moves. En passent

captures are seldom seen in transcripts of masters level games and the

typical advice for castling is to castle in the first ten or twelve

moves. This means that for en passent captures, training boards would

be difficult to find. For castling, the rule of thumb is not included

in the features used. Additionally, if these moves were to lead to

good boards, it is reasonable to assume that if discriminants are found

that lead to good boards they should work for en passent and castling

even if no such moves are considered in training. The basis for this

assumption is that moves are based on the worth of the resultant board

rather than the actual move itself and the compound linear machine is

trained by using the board patterns.

70

Although this decision simplified the move generation module re-

quired in the program and somewhat reduced the number of patterns of

next boards to be considered, it did not help pick boards from which

to generate next boards. Another decision of elimination was made at

this point to reduce the field from which to choose. Many papers on

chess programs suggest that the opening game of chess is well under-

stood and documented and that it is reasonable to let the machine

store book openings and play from them for the first few moves of a

game (Shannon, 1950:272; Frey, 1978:77; Slate, 1978:102; Hearst, 1978:

177-8; Zobrist, 1973:97). Therefore chess openings were eliminated

for inclusion in the training set.

At this point there was still a wide universe to choose from.

Two possible sources for boards were represented by transcripts of

masters games and by books of chess problems. Representative boards

from both sources were selected. For the latter source, books of

chess problems, the typical presentation consists of a starting board

from the middle or end game and a statement of some goal which can be

obtained, such as gain of material advantage or checkmate. There is

a specified sequence of moves which is guaranteed to lead to the solu-

tion. If the player to move makes the proper move selection the op-

ponent has only one best move in reply so that each resultant board

in the solution sequence of moves can be used as a training board in

addition to using the original problem board. Examples of this type

book from which training boards were selected are those by Reinfeld

(Reinfeld, 1977, 1979). The other source of training boards, recorded

games between masters, required a different approach. Samuel used

records of checker games between masters by either storing all moves

71

AftI

made by both sides if the game was a draw or by storing only the moves

of the winning side (Samuel, 1967:612). The assumption was that both

sides made good moves in a draw and all moves made by a winning player

were good. This approach does not seem justified for chess. Study of

transcripts indicates that masters sometimes make poor moves from which

they recover and that in any given game both players may make both

good and bad moves. This analysis is based on the move comment nota-

tion usually found in the transcript as given by another chess master.

These same move comments also clearly indicate when a good move has

been made. The decision was made to use such annotated moves as train-

ing board sources. The accomplishment of this was by means of modifica-

tion to a program by Bell that reads, makes, and stores chess moves

(Bell, 1979). The program reads games recorded in English notation

and repeats the play. With minor modification the program was coded

to store only those boards from which a move was made that was annotated

as good. Each such occurrence resulted in a training board with a

good move indicated by an expert. Books used for source material for

this selection of boards were Horowitz (Horowitz, 1978) and Wade (Wade,

1973). It should be noted that the opinion of a move's worth may change

with time, but this is of no significance as long as a move once listed

as good is not later changed to bad.

It would have been reasonable to include in the training set sev-

eral hundred if not several thousands of boards. Instead only 85 boards

were used for two reasons. First, as an initial attempt it was felt a

small number should be tried to refine the pattern representation and

clustering techniques. Second, the hierarchial clustering technique

being used at the time required a core resident similarity matrix for

72

all elements to be clustered. Even when stored in a space saving

triangular form, such a similarity matrix requires for storage on the

order of N2/2 positions or words, where N is the number of elements to

be clustered. Thus only a small number of boards were used.

Step 4. Find a Linear Move Discriminant for Each Board. This was

a simple attempt to find if there existed for individual boards linear

move discriminants. For each board, all next possible boards were gen-

erated using the move generation routine of the program (procedure

LISTMOVES). In practice a board was considered a possible next board

only if it was legal in the sense that it did not leave the king of

the player that must move in check. Using the pattern generation

modules, the patterns associated with each next board were generated.

The patterns were augmented and then all patterns except the one for

the board resulting from the specified good move were negated. This

resulted in a matrix ready for input to the Centered Accelerated Relaxa-

tion Method (CARM) algorithm as described in Chapter IV. The results

that came out of this step will be discussed in the separate results

section of this chapter.

Step 5. Formation of Board Clusters and Determination of Group
and Move Discriminants. As described in Chapter IV, a preprogrammed

hierarchial clustering technique is used at this point to form initial

clusters. This routine was run using the patterns of the training

boards themselves as input (as opposed to patterns of next boards) and

initial clusters chosen. Information on assigned cluster membership

was then used as input to runs of a program which attempts to find

discriminants for chess boards. One run of the program searched for

73

. *

group discriminant functions while the second run of the program

searched for a move discriminant function for each specified group.

The CARM routine was used in both instances in the same manner as

described in Chapter IV. Results from the two runs were used to at-

tempt to find group membership assignments leading to fewer errors and

the procedure of making two runs was repeated. Results are presented

in the following section.

Discussion of Results. The results from searching for linear dis-

criminants for chess boards are summarized in Tables 2, 3 and 4. Each

table will be considered separately and then comments concerning all

success rates and probability of error will be discussed. Results are

shown for chess problem boards, defined as those training boards re-

sulting from books of chess problems, and for chess game boards which

are those boards resulting from extraction of boards from games between

masters. Totals for all boards are also given.

Table 2 shows results from searching for a unique linear r:iuw,

discriminant for each board. Results are cumulative, showing tmw

total number of boards for which the recommended move was rated ,

of all moves, the number of boards for which the recommended move wds

rated among the top five moves, among the top ten moves, and in tne tp

half or 50% of all moves for the board. Success for training boards

from the chess problem board source is always better than success for

boards from masters' games. It is conjectured that this occurs because

the chess problem boards involve well defined tactical considerations

of the type considered in the feature representation for the chess

boards. The masters' game boards on the other hand are boards for

which some commentator (usually also a chess master) noted that a good

74

Best Move Best Move Best Move Best Move
Rated in in in

Highest Top 5 Moves iTop 10 Moves Top 50%

Nr Nr Nr

Chess Problem Boards 23 63.9 28 77.8 30 83.3 31 86.1
36 total boards

Chess Game Boards 17 34.7 27 55.0 37 75.5 43 87.8
49 total boards 17_34.7_27_55.__37_75.5_43 _87.

All Boards
85ttl40 47.1 55 64.7 67 78.8 74 87.185 total

Table 2. Move Discrimination Results for Finding a
Single Linear Discriminant per Chess Board

move had been made. It is thought that such evaluation probably is

based not only on the current worth of the board but its potential as

well. Board potential is probably not well measured by the type of

features in the pattern representation used. If the information used

by the master could be defined, a feature could probably be designed

to measure appropriate factors and linear discrimination performance

on this type board could probably be improved. It should be noted that

this shortcoming of not evaluating what are probably strategic as op-

posed to tactical factors is common to most chess programs and not

unique to the technique used here. Even though this shortcoming exists,

the percentage of success indicates that linear discriminants can per-

haps achieve a single board success rate equal to that of Samuel's

checker program (as discussed in Chapter V) and therefore might be used

to play a good game. This statement must be taken generally since

Samuel's rate of error was for a much larger test set and did not in-

volve one discriminant per board. The percentage success with which

linear discriminants evaluate the recommended move among the top several

75

moves indicates that the technique might be appropriate for pruning of

game tress and decision trees in general. Again, the results in Table

2 involve one discriminant per board rather than a single discriminant

so results must be interpreted accordingly. Results obtained warranted

further consideration of chess evaluation using the chosen pattern

features. A search for discriminants for a compound linear machine was

performed next.

Tables 3 and 4 give results for trying to find group discriminant

functions and move discriminant functions for each group, respectively.

Unfortunately time and computer resource considerations have resulted

in only preliminary results to date. The IMSL routine for hierarchial

clustering described in Chapter IV was used to find an initial cluster-

ing possibility for the chess boards. Complete linkage clustering was

used. The level of clustering chosen called for six groups of approx-

imately equal size (ten to fifteen members) and a seventh group of

three members. Exact cluster membership used is detailed in the ap-

pendices. The initial attempt to find group discriminant functions

using the CARM training algorithm in the manner described in Chapter IV

resulted in only two boards being classified correctly. The manner in

which the resulting discriminants classified the boards indicated that

an underlying structure of fewer groups with more members probably

existed. Although exact comparison was not made it appeared that a

higher clustering level from the possibilities revealed by the cluster-

ing algorithm should have been used. Higher is used in the sense that

larger clusters than those chosen should have been used. A second

trial for group membership possibilities was attempted. In this trial

boards were assigned to groups based on where the group discriminants

76

Total
Number Number

of Correctly % Correctly
Boards Assigned Assigned

Trial Group Set 1
Chess Problem Boards 36 0 0
Chess Game Boards 49 2 4.1
Total all Boards 85 2 2.4

Trial Group Set 2
Chess Problem Boards 36 24 66.7
Chess Game Boards 49 27 55.1
Total all Boards 85 51 60.0

Table 3. Results for Finding Group
Discriminants for Chess Boards

Best Move Best Move Best Move Best Move
Rated in Top in Top in
Highest 5 Moves 10 Moves Top 50%

Nr % Nr % Nr % Nr %

Chess Problem Boards 17 47.2 27 75 29 80.6 33 91.7
36 Total Boards

Chess Game Boards 7 14.3 18 36.7 22 44.9 29 59.2
49 Total Boards

All Boards 24 28.2 45 52.9 51 60.0 62 72.9
85 Total

Table 4. Results for Finding a Move Discriminant
for each Group of Chess Boards, First Trial

from the first trial attempted to assign them. This resulted in four

groups of boards varying in size from two to fifty-two members. The

results in Table 3 show that the correct group assignment rate for all

boards went from 2.4% to 60% with corresponding success rate increases

for the two types of boards involved. Table 4 shows results from trying

to find move discriminants for groups of chess boards. The data reported

is for group membership identical to that used in the first trial of

77

group discriminant search. Success for evaluating the recommended move

is less than in the single discriminant per board case but results

still indicate a fairly high success rate in terms of rating the recom-

mended board among the top moves. These are the only results available

at this reporting. Although these results are for a very small set of

boards they indicate that a compound linear machine can be effectively

used to evaluate some chess boards. Further data must be accumulated

before more definitive statements can be made.

Some comments on the accuracy of the error rate displayed as an

estimate of actual performance error rate should be made. First con-

sider error from the viewpoint of estimated success rate. In address-

ing the two category classification problem, Nilsson points out that due

to the geometry of the situation there is a high probability of being

able to find a linear discriminant function any time the number of

patterns involved in the attempt is less than or equal to twice the

number of weights involved (Nilsson, 1965:38-40). Since the move dis-

criminant function is a two class problem and there are fifteen weights

needed for discrimination of the 14-tuple weight patterns used, this

means a working discriminant function might be found for an individual

board from which only a few moves are possible regardless of the actual

value of the features. When a move discriminant for a group is found,

where there are several hundred patterns involved, the discrimination

achieved is most likely due to the separability of the data. These

results are not directly extensible to multiple class case of separation

of groups (Nilsson, 1965:40). Now consider whether the error rate on

the training set(if accepted)is a good measure of what the true error

rate of the machine would be for the complete game of chess. Again

78

the major work in this area addresses the two-class problem. Foley has

written a paper concerning the use of the design set or training set

error rate as an estimate either of Bayes or test-set error rate.

Foley's work applies specifically to the two-class problem with multi-

variate normal distributions. The pattern classes for chess are dis-

crete and are by no means expected to be Gaussian in nature, but the

results are mentioned as one of the few theoretical measures available.

Basically Foley shows that if the ratio of samples per class to the

number of dimensions is less than three, the design set error rate is

a poor estimate of the test set or of the Bayes error rate (Foley,

1972). Keeping in mind that these results are for a different form of

problem than chess, they still suggest that unless the number of pat-

terns used is large, the achieved error rate with the training set may

not be a dependable estimate. Intuitively this result parallels

Nilsson's statements concerning number of patterns and dimensionality.

If nothing else, the two results together suggest that the number of

training patterns must be several times larger than the number of

features for dependable results. For the typical chess board used in

this effort there are between 35 and 40 possible training moves per

board. Therefore results for finding a single linear discriminant per

board are on some borderline of dependability. Results for finding group

discriminants for 85 boards and finding move discriminants for groups

where several hundred boards comprise the next board training set are

on the dependable side of the borderline.

One other source of possible error should be mentioned. In search-

ing for group discriminants, the method used involved separating each

group from all ocher groups simultaneously through use of linear

79

discrimination. This technique will only converge for the restrictive

case in which each group is linearly separable from the group consisting

of all other groups. This is distinctly different from the case of

being individually separable from each of the other groups. Nilsson

states a training theorm and algorithm for multiple class cases that

guarantees convergence in the case thatlinearly separable groups of the

latter sort do in fact exist. The technique involves correcting not

only the group discriminant function for the group of which a pattern

is a member, but also corrects the discriminant function of the group

to which a pattern is erroneously assigned (Nilsson, 1965:87). The

accelerated relaxation method used in this paper corrects only the

discriminant of the group to which the board belongs. However, if

the method were modified for the multiple class case to correct dis-

criminant functions in the same manner as Nilsson's procedure, con-

vergence should be achieved when a solution exists. This change should

be made to the version of the algorithm that searches for group dis-

criminants.

80

VII. Conclusions and Recommendations

Conclusions and recommendations are made in two areas. The first

area covered will be conclusions and recommendations concerning further

exploration of the use of linear discriminants to model human decision

making in general. The second area covered will be recommendations con-

cerning attempts to evaluate chess boards using linear discrimination

techniques.

From the viewpoint of initial results the use of linear discrim-

inants to model human decision making in game playing holds promise of

some success. Further exploration should be conducted using a larger

training set to allow the drawing of definitive conclusions about the

success rate of this technique for game evaluation. The training set

used should be several times larger than the number of features em-

ployed to insure that any success is a result of successful linear dis-

crimination and not a result of the geometry of the problem.

The use of a hierarchial clustering technique should be reap-

praised. The major reasons for use of this technique were convenience

and the resulting large number of possible clusterings the technique

usually suggests. However, the technique requires large storage and

time allocations as the number of samples to be clustered grows. Since

the purpose of using a clustering technique is to achieve an initial

grouping of boards which will be refined, a less resource consuming

clustering technique should provide adequate results in a more efficient

manner.

81

Although preliminary results are by no means conclusive, it is

recommended that some decision making environment other than game play-

ing be chosen and that data be gathered for use in attempting to model

the decision making process involved using linear discriminants.

Actual modeling should follow further study of the linear discrimination

technique in the game playing environment, but data collection should

begin as soon as possible because a long time period may be necessary

for the effort. No specific area for study is recommended but some

field involving resource allocation decisions is suggested on the con-

jecture that more is understood about the factors involved than in some

other areas of management. Current study groups involved in modeling

the decisions of military commanders should be contacted as a possible

source of data.

Three recommendations are made concerning further work in applying

the compound linear machine approach to the game of chess. The accum-

ulation of values for features of chess boards should be modified. The

current evaluation appraises terms considered important but imbeds the

information in a feature that is a sum of terms for a given piece. The

features should be changed to summations of like terms for all pieces

into a common feature (such as a mobility feature, a square control

feature, or the like). This recommendation should be implemented with

a second recommendation that the dimensionality of the pattern vector

be allowed to increase and that the number of patterns in the training

set be increased significantly. Results from using such data could then

be explored with dimensionality reduction techniques such as Fischer's

linear discriminant to achieve an optimum feature set. The final

recommendation is that a chess program be developed to implement the

82

decision process developed using the compound linear machine approach.
This would allow testing of the technique against both human opponents

as well as other chess programs and would thus provide a more practical
as well as rigorous comparison of the compound linear machine approach

to other techniques.

83

Bibliography

Anderberg, Michael. Report OAS-TR-72-1, "Cluster Analysis for Appli-
cations", AF Systems Command, 1972 now available as book Cluster
Analysis for Applications, Academic Press, Inc., New York.

Banerji, Rana B. "Game Playing Programs: An Approach and an Overview."
Theoretical Approaches to Non-Numerical Problem Solving, edited by
R. B. Banerji and M. D. Mesarovic. Heidelberg, Germany: Springer-
Verlag, 1970.

Bell, A. G. "How to Program a Computer to Play Legal Chess." The
Computer Journal, 13: 208-219 (May 1970).

-"How to Read, Make, and Store Chess Moves." The Computer
Journal, 22: 71-75 (February 1979).

Carl, Joseph W. "Some Comments on Learning Evaluation Functions for
Machine Game-Playing." Unpublished paper written for Artificial
Intelligence Course. Ohio State University, Columbus, Ohio, 1976.

Chang, Chin Liang. "The Accelerated Relaxation Method for Linear
Inequalities." IEEE Transactions on Computers, C-20: 222-225
(February 1971).

Charness, Neil. "Human Chess Skill." Chess Skill in Man and Machine
(Corrected Printing), edited by Peter W. Frey. New York: Springer-
Verlag, 1978.

Duda, Richard 0. and Peter E. Hart. Pattern Classification and Scene
Analysis. New York: John Wil-, and Sons, 1973.

Fine, Reuben. The Middle Game in Chess. New York: David Mokay
Company, Inc., 1952.

Foley, Donald H. "Considerations of Sample and Feature Size." IEEE
Transactions on Information Theory, IT-18: 618-628 (September 1972).

Frey, Peter W. "An Introduction to Computer Chess." Chess Skill in
Man and Machine (Corrected Printing), edited by Peter W. Frey. New
York: Springer-Verlag, 1978.

--- Chess Skill in Man and Machine (Corrected Printing), edited by
Peter W. Frey. New York: Springer-Verlag, 1978b.

-"Creating a Chess Player." Byte, 3: 182-191 (October 1978c).

-. "Creating a Chess Player, Part 2: Chess 0.5." Byte, 3: 162-
181 (November 1978d).

-"Creating a Chess Player, Part 3: Chess 0.5." Byte, 3: 140-
157 (December 1978e).

-- "Creating a Chess Player, Part 4: Strategy in Computer Chess."
Byte, 126-145 (January 1979).

84

General Research Corporation. TAC Aggressor Methodology Measure, Pre-
liminary Draft. Report for Tactical Systems Division, ACSStudies
and Analysis, Headquarters, USAF, under Contract F33615-77-C-0400.
Washington: Department of the Air Force, December 1978.

Gillogly, James J. The Technology Chess Program. Report Number CMU-CS-
71-109. Pittsburgh: Department of Computer Science, Carnegie-
Mellon University, November 1971.

Greenblatt, Richard D., et al. "The Greenblatt Chess Program."
Proceedings of AFIPS Fall Joint Computer Conference: 801-810.
Anaheim, California: -T967.

Hearst, Elliot. "Man and Machine: Chess Achievements and Chess Think-
ing." Chess Skill in Man and Machine (Corrected Printing), edited
by Peter W. Frey. New York: Springer-Verlag, 1978.

Horowitz, I. A. and the Editors of Chess Review. The Golden Treasury
of Chess (Revised Edition). New York: Cornerstone Library, 1978.

Hung, Albert Y. and Richard C. Dubes. "An Introduction to Multiclass
Pattern Recognition in Unstructured Situations." Report AF-AFOSR-
1023-67B. Arlington, Virginia: Air Force Office of Scientific
Research, Directorate of Information Sciences, 1970.

Hinrichs, Delmar D. "Tic-Tac-Toe: A Programming Exercise." Byte, 4:
196-203 (May 1979).

IMSL Lib-0007. IMSL Library Reference Manual (Edition 7). Houston,
Texas: International Mathematical and Statistical Libraries, Inc.,
January 1979.

Jackson, Philip C., Jr. Introduction to Artificial Intelligence. New
York: Petrocelli Books, 1974.

Jensen, Kathleen and Niklaus Wirth. PASCAL User Manual and Report
(Second Edition). New York: Springer-Verlag, 1979.

King, Paul F. A Computer Program for Positional Games. Report 1107.
Interim scientific report under grant number AF-AFOSR-125-67, Air
Force Office of Scientific Research. Cleveland, Ohio: Jennings
Computer Center, Case Western University, July 1978.

Koffman, Elliot B. Learning through Pattern Recognition Applied to a
Class of Games. Report SCR 107-A-67-45. Interim scientific report
under grant number AF-AFOSR-125-67, Air Force Office of Scientific
Research. Cleveland, Ohio: Systems Research Center, Case Western
Reserve University, May 1967.

Knuth, Donald E. The Art of Computer Programming, Volume I, Fundamental
Algorithms (Second Edition), edited by Michael A. Harrison and
Richard S. Varga. Reading, Massachusetts: Addison-Wesley Publishing
Company, 1973.

85

Mays, C. Hugh. "Effects of Adaptation Parameters on Convergence Time
and Tolerance for Adaptive Threshold Elements." IEEE Transactions
on Computers, EC-13: 465-468 (August 1964).

Minsky, Marvin and Seymour Papert. Perceptrons, An Introduction to
Computational Geometry. Cambridge, Massachusetts: Massachusetts
Institute of Technology, 1969.

Mitre Corporation. CONSTANT QUEST Modeling Groups Phase 1 Report.
Report for Directorate of Tactical Systems, Deputy for Development
Plans, Electronic Systems Division, AFSC, under contract AF19628-
79-C-D001. Bedford, Massachusetts, April 1979.

Nilsson, Nils J. Learning Machines. New York: McGraw-Hill Book
Company, 1965.

-Problem Solving Methods in Artificial Intelligence. New York:
McGraw-Hill Book Company, 1971.

Reinfeld, Fred and Chernev Irving. Chess Strategy and Tactics. New
York: David McKay Company, Inc., 1946.

Reinfeld, Fred. 1001 Brilliant Ways to Checkmate (1977 Edition).
North Hollywood, California: Melvin Powers, Wilshire Book Company,
1977.

----- 1001 Winning Chess Sacrifices and Combinations (1979 Edition).
North Hollywood, California: Melvin Powers, Wilshire Book Company,
1979.

Russell, Richard. "Kalah - The Game and the Program." Stanford
Artificial Intelligence Project, Memo No. 22. Palo Alto, California:
Stanford University, 3 September 1964.

Samuel, A. "Some Studies in Machine Learning Using the Game of
Checkers." IBM Journal of Research and Development, 3: 210-229
(July 1959).

- "Some Studies in Machine Learning Using the Game of Checkers,
II - Recent Progress." IBM Journal of Research and Development, 11:
601-617 (November 1967).

Shannon, Claude E. "Programming a Computer for Playing Chess." The
Philosophical Magazine, XLI: 256-275 (March 1950).

Slagle, James R. Artificial Intelligence: The Heuristic Programming
Approach. New York: McGraw-Hill Book Company, 1971.

--- "Experiments with Some Algorithms that Find Central Solutions
for Pattern Classification." Communications of the ACM, 22:
178-183 (March 1979).

86

Slate, David J. and Lawrence R. Atkin. "Chess 4.5 - The Northwestern
University Chess Program." Chess Skill in Man and Machine (Cor-
rected Printing). New York: S-ringer-Ve-rlag, 1978.

Uhr, Leonard. Pattern Recognition, Learping, and Thought: Corputer-Programmed Mode s of Higher Mental Processes.-Engewood Cliffs,

New Jersey: Pr-entice-Hall, Inc., 1973.

Wade, Robert G. and Kevin D'Connell, Jr. Bobby Fisher's Chess Games
(Second Edition). Garden City, New York: Ooubleddy and Company,
1973.

Whaland, Norman D. "A Computer Chess Tutorial." Byte, 3: 168-181

(October 1978).

Young, Tzay Y. and Thomas W. Calvert. Classification, Estimation
and Pattern Recoqnition. New York: American Elsevier Publishing
Company, Inc., 1974.

Zobrist, Albert L. and Frederic R. Carlson, Jr. "An Advice-Taking
Chess Computer." Scientific American, 228: 92-105 (June 1973).

87

AD AD65 710 AlR FORCE INS OF TECH WNIGT-FPATERSON AFP OH 5 ACH0-MTC F/0 12/1

LEARNING GAME EVALUATION FUNCTIONS WITH A COWOUN0 LINEAR MACICTCI
WAR GO W P NELSON

UNCLASS IFT/SS/Il/80-2 ML*2Em1111111111

11111"25 JI I1 -6

MICROCOPY RES UTION TEST CHART

APPENDIX 1

PASCAL CODE FOR CHESS BOARD EVALUATION AND RELATED ROUTINES

7.77"77

(*SU+*)
PROGRAM CHESSDOC(It!PUT,OUTPUT);
(*THE FOLLOIr!G ROUTINES AMD DATA TYPES ARE IN'TENDED OLY TO

GIVE THE READER THE FLAVOR OF HOl! T1HE CHESS !rOVE GENERATION
MODULES AD EVALUATION "ODULES OPERATED. ALTHOUGP THESE
ROUTINES ARE EXTRACTED FROM1 ACTUAL PROGRA;I, INITIALIZATION
AMD UTILITY DERUGGIVG AlVD P I'JTINTG
ROUTINES ARE -OT I!ICLUDED. THE I;'PORTANT ROUTIPES ARE
EVPA'It'S AND EVBrDFTRS !HICH DErlO,,STRATE THE EVALUATION OF
A CHESS BOARD. OTHER ROUTINES I;CLUDED PROVIDE PACKGOUM!D
INFORMATION. THE OPERATION OF ALL rVOVEROUTIMES IS ,ASED ON
THE LEGAL CHESS PROGPAS SUGGESTED DY DELL A1VD THE I!TEPESTED
READER IS REFERRED TO HIS ARTICLES (?ELL, 197f A:'D 197Q). THE EVA UA-
TION ROUTINES ARE SASED ONi THOSE USED EY CHESS 4.5. SEE CHAPTERb
THIS THESIS AD/OR SLATE AND AT,.IN'S DESCRIPTION (SLATE, 197).
THE CODE IS PASCAL AS DESCRIBED FOR THE CDC6600 (AND CYBER SERIES)
BY JENSEN AND WIRTH (JENSEN, 1979).

CONST
BRDL, GTH = 64;
WHITE 1;
BLACK 2;
NFEATURES = 30;
NPATTERS = 10;
EXTNPATTERNS =--000;

TYPE
CHSSQR = O..BPDL'GTH;

FTRVEC = ARRAY [1..r.FEATURES' OF REAL;
PATVEC = ARRAYE1.PATTEP,."S OF REAL;
PATMAT = ARRAYEI..'PATTERl"S] OF FTRVEC;
PATFILE = FILE OF FTRV'EC;
INTVEC = ARRAY[1. .TPATTERMS] OF INTEGER;
EXTINTVEC = ARRAY[1 .. EXTNPATTERflS] OF IHITEGER;
EXTPATVEC = ARRAYEl..EXTPATTERt!S3 OF REAL;
PLAYER = WHITE..BLACK;

CHSME- (UP.Ur., ,R.,!Q.,I..BP.RN.RR.R.DQ.BKNT.CK),
(*UJHITE PA" ''HITE IMIGHT . LAC' KIG NULL PIECE*)
(*CK IS SPECIAL NOTATIOM 6SE6 IN SEARCH!I G FOR IMItG MOVES*)
(*STANDING FOR CHECI" TO INDICATE THAT IF A KING MOVED TO*)
(*SQUARE 1.ITH VALUE CK IT UOULD DE IN CHECK*)

PCARY = ARRAYO..63 OF CHSMEM;
CHSSET = SET OF CHSr;Ef!;
POS = ARRAY[I..14J OF CHAR;
BOARD = ARRAYCO..BRDL.NGTH) OF CPSMEM;
PWNARY ARRAYEI.8 -O..9] OF EOOLEA!;
PWMBOARD = ARRAY["HITE..PLACK3 OF P!'.!ARY;

(*REFERENCE PAWN SQUARE AS PUNMOARD[SIDE RANK FILE)*)
KGSQ = ARRAY[CHITE..BLACK3 OF CHSSOR; (*SCUARES (gINGS ARE OI*)

(*FOR EASY REFERECE AND MULTIPLE SEARCH AVOIDAMCE*)
BRDREC = RECORD (*OF ROAPD AND CURRENT GArME STATUS,IFJTERMAL*)

B : BOARD; (*IMTERAL CHESS POARD*)
WORB : WHITE..BLAC.; (*SIDE TO fOVE,HlHITE=I .LACK=2*
CHK : ROOLEAM; (*TRUE IF SIDE TO MOVE IM C:ECK*)
WKR : BOOLEAM; (*'!HITE KING POO," TRUE IF rOVED*)
WOR : .OOLEA.; (*UHITE QUEEN ROo' TRUE IF !1OVED*)
WKK : BOOLEAN; (*'.!HITE KING DITT6*)
BKR : BOOLEAN; (*FLACK KING ROOK DITTO*)
BQR : BOOLEAM; (*eLACK QUEEN ROOK DITTO*)
BKK : BOOLEAN; (*SLACK KING DITTO*)

(*PREVIOUS SIX VARIABLES USED TO DETERr.INE CASTLING
LEGALITY*)

EP : CHSSQR; (*LAST SOUARE MIOVED TO FOR CHECKING ENPASSENT
CAPTURE POSSIBILITIES*)

PB : PUMBOARD; (*PAItlI STRUCTURE ASSOCIATED t'ITH 0*)
KINGSQ : KGSO; (*KI;NG SQUARE ARRAY ASSOCIATED VNITH 9*)
REF : INTEGER; (*BOARD REFERENCE tIUfBER*)
END (*BRDREC*)

TBRDREE = RECORD
BROR : BRDREC
FR TOO : CHSS6R
r.-VfT1NT : ARRAYEI..43 OF CHAR;
END; (*TBRDREC*)

89

.I.~m m - .-|

TBRDFILE = FILE OF TBRDREC;
FRTEC =SRECOR"D

PC : CHSVEI;SIS PAGE IS ,
EMD (*FRTOREC*)

FRTOAR4AY = ARRAY 10..273 OF FRTOREC;
PCSTATREC = RECORD

PC : CHSIEr!;
ON : CHSSOR;
TOO : FRTORAY;
ATKDFR : FRTOAP, AY;
END; (*PCSTATREC*)

ENGFRD = ARRAYE1..4,1..0RDL~!GTH] OF CHAR;
SIDE = ARRAY[1..16) OF PCSTATREC;

(* GLOBAL VARIABLES *)
VAR

(*GLODAL VARIABLES FOR CHECKING SIDE MEMBERSHIP AND TYPE OF
PIECES*)

SIDESET : ARRAY[UHITE..DLACK] OF CHSSET;
(*AN INTIALIZATION ROUTIV!E SETS SIDESET["LHITE] TO WHITE

PIECES A,!D SIDESE[,LACK] TO CLACK PIECES*)
PCSARY : ARRAY[',HITE..SLACK] OF PC.PRY;

(*USED TO STORE VALUES OF TYPES CF PIECES '!ITH POSITION
1 THROUGH 6 ECUAL TO PA"' . NIGHT BISHOP OO, (JE,,'1;'G
OF APPROPRIATE SIDE Ip THAT ORDER. SET 6Y IfIALiZATION
ROUTINE tOT ItICLUDED VEP.E*)

4"** CHESS r OVE FU'!CTIO*!S AMD ROUTINES AS UELL AS ROUTINES ***)
(*** SUPPORTING THE;'***)

(*** MOVE FUNCTIONS NEXT ***)

THE FOLLO.IBlG FUlCTIO!S M.E ESES S-1 11 AO rlW ARE THE BASIC
FUNTIOLS BY HICH ALL CE S PUICE iOVES ARE DEFIrlED. THE DIRECTIONS
CORRESPOND TO CO1'PASS DIRECTIO'S cIN A CI'ESS SOAPD !WHERE VORTH IS
TOU'ARD SLACK'S VACK PAr')" Al'D SOUTH 15 TOb:'^D V'HITE'S DACK RANK
PRIMARY USE IS SY PROCEDURES .PtIOVE r'Pf'OVE VfIOVE, ETC.
WHICH ARE THE CHESS PIECE IOVENENT ROUTINES

(** ALL LEVEL 1 **)
FUNCTIOM N(SQ:CHSSQR) : CHSSQR;

BEGIN
IF (SQ>=I) AND (Se <=56) THEN N:=SD+8 ELSE t:=O;
END; (*OF N FOR VORTH rlOVE*)

FUNCTION NE(SQ:CHSSQR) : CHSSQR;
BEGIN
IF C(SQ>=I) A:D (SQ<=56)) AND ((SQ MOD 8) 4> 0) THEN

NE := SQ+9
ELSE NE : 0;
END ;(*OF ME FOR NORTH EAST MOVE)*)

FUNCTIOM E(SQ:CHSSOR) : CHSSQR;
BEGIN
IF (SQ MOD) > 0 THEN E := SQ+1 ELSE E:=O;
END ; (*OF E FOR EAST fIOVE*)

FUNCTIOM SE(SQ:CHSSQR) : CHSSQR;
BEGIN
IF ((Q=9) AM'D (SQ<=64)) AtID ((SQ 100 8 <> 0)) THEN

SE : SQ-7
ELSE SE 0
END; (* OF Si FOR SOUTH EAST MOVE*)

FUNCTIOA S(SQ:CHSSQR) : CHSSQR;
BEGIN
IF (SQ>=9) AND (SQ<=64) THEN S :=SQ-8 ELSE S :=O;
END; (*OF S FOR SOUTH 1!OVE*)

FUNCTION SW(SQ:CHSSQR) : CHSSQR;
BEGItN
IF (SQ>=9) AND (SG<-64)) AND ((SQ NOD 8) <> 1) THEN

SW :a SO-9
ELSE SW :; 0.
END; (0 S FOR SOUTH WEST MOVE,)

90

FOR I:=WHITE TO BLACK DO
BEG INr
(*CALCUJLATE IfPORTAICE FACTOR BY WHICH TO !ULTIPLY*)
(*GUARDEDM2ESS FACTOR*)
IF I='.Jfl!ITE TH-t' TE!1POPT: =LACK ELSE TErIPOMflT:WHITE;
IF QUEENiOMIM1PDCEMPOP:'T) THEM K:=2 ELSE 1":=O;
K:=K + e3OMPAIIMPCETEtIPOPHT) -2;
IF K < 0 THEN K :=0;

C*ALCULATE GUARDEDNESS FACTOR*)
(*Klt!G NIOT IN MOr) 'CORNER' PENALTY*)

IF I=1WHITE THEM
IF ORD KIrIGSO[WHITE3 IN [1,2,7,8,9,10,15,163 THEN

TEMA'VAL :=0.0
ELSE TErPVAL :=-3.2

ELSE (*I='ILAClK'*)
IF (BRD .ItGSQ1CtLACK3 ItN !49550655 56,57 58)

OR ((FRD.KIMGSQEFZLACK3=63~ 0 (6RD. KI.GSQ1BLACK3=64)) THEN
TEf-lPVAL := 0.0

ELSE TEE PVAL :=-3.2;
(*NOQ PAN? I IN M1IN FILE PEIAL TY*)
TEMPFILE FIL(F3RD.KItIGSOM 1I);
IF PIthPERFILCI ,TErlPFILE) < 1 fHE? TE!IPVAL:=TEI*PVAL-4.1;
(*f10 PAWN It) FILES ON SIDE OF KING PENALTY*)
CASE TETIPFILE OF

1:1 F PI!MPERFILCI T!:T"PFILE+1) < 1 THEM! TEf!PVAL:=TEflPVAL-3 .6;'
2,3 4 5 6 7:IF (6 f'NPEFIL[I,TEfPFILE-1) < 1) AM~D

fP(,116E6FILCI TEMPFILE+l) < 1) THEN TElPl,0AL:=TEfTIPVAL-3.6;
8:IF Pt-,r!PER FjL[I,TE?".PFILE-1) < 1 THEM TEMPVAL:=TEMPVAL-3.2;
ElD* (*CA~c

(*flOJ EALCULATE FULL 'ING SAFETY TO DATE*)
(*EQUAL TO I?1POPTANCE TIMES GUARDEDMESS*)
TEflPVAL :=K*TElPVAL*
(*M14) ADD PENALTY FOA ADJACEI:T SQUIARES UNDER ATTACK AND/OR*)
(*KIIG CURREMTLY IfN CI!ECK*)
(*STORE FINAL VALUE AT SANE TIME*)
IF IzPLYR THEM OFFSET:=0 ELSE OFFSET:=7;
FE7+OFFSET):=TEtNPVAL + KINGATKSCI);
END;

FrNFUSED] := 1.0; (*USIMG AUJGNENTED WEIGHT VECTORS*)
ENDi (*EVBRDFTRS*)

BEGIN t*DUiIIY PROGRAMI BODY*)
END.

THISM PAGE TS

91

Amk-

(*KINiG TROPISMI COtIPUTATON, 5-TAXIDISTAMCE FROM OPPOMENfT'S*)

+0 FSETJ := FC34OFFSET] +
(5 - TAXIDIS(PCPEC.t Or-'Rf KINGSQI:TEIIPOPIJT)

(*CEtITER TROPISll CALCULA 106 V- 2*TAXIDISTANCi FROM*)
(*CEMTER OF eOARD AT 4.5 4 5 TO K"!IGHT*)
(*TAXIDIS ONLY GOOD FOR f!SSQRS,CAII'lT USE HERE,DO HARD WAY')
TEMPVAL := APSCL.5 - TEr1DFILE);

(*THAT' S 11OTMIONTAL DISTANCE !!01' VERTICAL*)
TEMPVAL :=TEMPVAL + A!?S(4.5 - EPRtK)
FC3+OFFSETJ:=Ft3+OFFSET] + 6 - 2*TEIPVAL;
(*DEVELOP'NEIIT, -9.4 .IF ON~ CACK flA!IK*)
IF ((PCREC PC=I'tl) At! (RAM?!2PECq. O?!'lf.lI 1))

OR ((PCUEC PC=3P0 AND (RAi!K(PCPEC.Ol,BLACK)1)) THEN
FCOFFSET+31 : FCOFSET+33 - 7;

END;
Wo, BF%: (*BISHOPS TERM1 IS FEATURE 4+OFFSET*)

BEG IN
ffOfNPAt-e'%PC S TEf'PPLYR3 : !!OrPA!MPCS ETErlPPLYR3 + 1

(*SQUARE CON!TROL COflPUTATIO-N. I SQUARES CONITROLLED f'OT*)
(*CONTA IMG FRIENDLY PAI1PS -17MUS 7*)
FOR J:=i TO PCREC.TOOCC).0 SO DO

IF PCREC.TOOEJL.PC <> PCSARYETEM.PPLYR,1) TfHEN
FrOFFSET+42 : F[CFFSET+4) + 1.0;

FCOFFSET+43 : FI:OFFSET+41 - 7
(*DEVELOP:!E!,T, -11 IF ON !DACK f ArK*)
IF ((PCREC.PC=X!M A111D (tPA!'K(PCIrEC . ON,l-!IITE)1l))

OR CCPCREC.PC=CSE) AND (RA'K(PCPEC.Or!,8LACK)=1) THEN
F(OFFSET+4) := F[OFFSET+4j - 11;

END;
WR,BR: (*ROOK TERM IS FEATURE 5+OFFSET*)

BEG IN
NONPAlJl!PCS CTErIPPLYR) : NOMPAWINPCS TErPPLYR) + 1;

(*rSQUJARE CONTROL C~flPUTATI0,'*)
FC5+OFFSET):=F[S4OFFSET3 + PtREC.TOEtf.S0;

W*INJG TROPISM1 COrIPUTATIOM, ACTUALLY PENALTY FOR DISTAt4CE*)
(*RO1 OPOMPIE'IT mS KI~IG*)
MFCOFFSET):=FC5+OFFSET) TAXIDISCPCREC.ON,

BRD.KI?!GSQ[TEilPOP'NT)
(*BONUS COPPUTATIO! FOR DOUBLED ROOI'S*)
IF DBLDPC(PCREC) THEN FCS+OFFSET):=FC54.OFFSET)+8;
END;

WQ,BQ: (*QUEEN TERM IS FEATURE 6+OFFSET*)
BEGIN

NONPAt-MFPCSCTEflPPLYR3 MOMPAIMMCSTE1PPLYR3 + 1;
QUEEt NORDETEMPPLYR] TRUE;

(*SQUARE CONTROL COM1PUTATIO'N NUMBER OF SQUARES CONTROLLED*)
(*THAT ARE M!OT ATTACKED BY 0IOMMEMT'S PIECES*)
FOR J:=l TO PCREC.TOOMLSO DO

IF MOT ATIKDFPOt1(BSD 3 PCnEC.TOO':J3.SO PCREC ATKDFR
TEriPPLYP) THE',' FCFfSET+6:=FtOFFSE +6) +'l.

(*KIAG TROPISMI COMPUTATIOM, ACTUALLY PENALTY FOR'DISTANCE*)
(*FROs'l OPOMMElS, KIf!G*) AF(6+OFFSET:=F 6+OFFSET) - TAIDIS(PCREC.ON,

BRD .KIMISQCTErIPOPHT));
END;

WK,BK: ('KINlG TERM IS FEATURE 74OFFSET*)
('ULL FACTOR CALCULATED LATER,COUIT ATTACKS ON FOR flt')
BEGIN
FOR J:1l TO PCREC.TOO(O).SO DO

IF PCREC.TOOE33.PCZCI' THEM (*U!OULD BE IN CHECK 0)
(*IF "OV D THERE*)
KIN!GATKS LTEMPPLY .J : KINIGATKSETEr*PPLYPJ-1

IF ATKDFRO(PP R PCPEC CONJ,PCR EC.ATKDFRPTEflPPI. ') THEN
(*THIS KIM 6ETL 1',!CECK*)

END; ('EASE STATfIENT')
END' ('OR LOOP TH4ROUGH4 PIECES ON BOARD')

('ACTUL EVALUATION OF KIING FEATURE TAKES PLACE NOU SICE 0)(('NEEDED FACTORS ARE CALCULATED By LOOKING AT EVERY PIECE 0)
('ON THE BOARD')

92 l otrS8S rLr
*

4
v

VALUJEWJ VAL WPHITE];
VALUE3 VAL [BLACK;
END; (*EVPAI;!S*)

PROCEDURE EVBPDFTRS(VAR BRD:BRDREC; VAR PLYR:PLAYER; VAR F:FTRVEC;
VAR rFUSED:I"TEGEP)*
(***PROCEDURE EVEflDiTRS(VAR RPD:B3RDREC;VAR PLYR:PLAYER; VAR F:FTRVEC;
(*** VAR NFUSED:fl'TEGER) *
(***THIS ROUJTINJE GENERATES THE PATTERN FOR THE CHESS BOARD III ROARD*)
(***RECORD ORD W-ITH RESPECT TO PLYR. THE PATTERN IS RETURNED IM 0)
(***VECTOR F WIITH THE m'urPER OF FEATURES GEMERATED SPECIFIED Im*)
C***RETURM VARIMI'LE tNFUSED-M'WFlER OF FEATURES USED*)

VA JKOFFSET,TFE:PPAf!K,TEflPFILE : INTEGER;
TEF~IPkR TE'1PnP;#TOO.I LYR
PCREC:PC§TATPFC ,'T:PLYR
NIONPAW-INPCS:ARRA C'E!'ITE. .PLACK)% OF INTEGER;
QUEEr!OrJORD: APRAY 1114 1TE. .9LACK)I OF POOLEAM;
PWN)PERFIL:ARRAYE!'HITE..LACK r1_410 OF IN'TEGER;

(*FOP COUNTINGC PAIM PRESENICE IM FILES *)
KINGATKSARRAYELJITE..DLACK) OF REAL; (*OR SAVING*)

(*KINIG ATTACK FACTORS*)
ATTACKED :90OLEAN;
TEMPVAL : REAL;

BEGI N
(*HOUSEKEEPING SETUP*)
IF PLYR =UNITE THENl OPUIT := MLACK ELSE OPHT := WHITE;
NFUSED :15-
FOR 1-:=l TO IFUSED DO FI): 0.0;
C*IflITIALIZE 'COUNTASLE' CHARACTERISTICS BOTH SIDES*)
FOR I:2WHITE TO BLACK DO

BEGIN
QUEENONBRD[IJ :=FALSE;
fNONPAWMPCS[I) :20;
FOR J:1l TO 8 DO PWNPERFIL[IJ):=0;
KINGATKSEI) :=0.0;
E*O "'VALUATE FEATURES eY LOOPING THROUGH BOARD 0)

FOR 1:=l TO BRDLflGTH DO IF BPD.BtI) <> fIT THEN
BEGI N
PCREC.PC :BPD.BEI3;
PCREC.ON :I;
(*SET OFFSET TO STORE FEATURES DEPENDENT ON ONHO PLYP T~)
C*AND SET WHO IS OPPONEMT AND WHO IS PLAYER FOR PIE CE *
C*BEItNG CONSIDERED*)
IF BRD.BIJ IN SIDESETEPLYR) THEN

BEGIN
OFFSET := 0;
TEriPPLYR :~PLYR;
TEMPO PtT :=OPNT;
END

ELSE
BEGIN
OFFSET := 7;
TEMPPLYR := OPrIT;
TEMPOPNT: = PLYR;

C*--!!--t4OTE THAT AT THIS POIT THAT PCREC.PC IS ASSURED*)
(*--!!--OF BELON1GINIG TO SIDE TE'.'PLYR*)
TEMPRAWK: RAN*-K(PCREC.Otl TETIPPLYP);
TEMPFILE :~FIL(PCREC.6ON,fEtPPt.YRVj
C*PLYRIS VALUES FEATURES 1-7 OPPNTS VALUE FEATURES 8-14*)
LISTNlOVESCPCREC.PC cDD. PCREC TOO PCREC.0'!)j*
(*FEATURE 1+OFFSET 1.9 TOfAL PF!.ER foR A $10*
FEI*OFFSET3 := FC1.OFFSET3 + PCVALCPCREC.PC);
CASE PCREC.PC OF
WP,BP: C*PAIPN TERtl IS FEATURE 2+OFFSET*)

C*EVALUATIOI IS TEMPORARILY DON.1E ELSE!!HER.E*)
(*BUT KEEP TRACK OF PA.!S PER FILE FOR LATER KING EVAL*)
PWNPERFILCTE;'PPLYR TEMPFILE3 := P1tfIPERFIL(TEIPPLYR,

TErMPFILE] + I
* WMh C*Kt!IGHTS TERM tS FEATURE 3.OFFSET*)(BEMIN

NOffPAW14PC SCTEI4PPLYR3 :xu NONPAWNPCS (TErilPPLYR3 + 1;

93 THIS PAGIS3 Q.,,UKL~ 1.

mawCa

OF BOTH OHITE'S AND PLACK'S PAWN STRUCTURES INi VALUEW AND 0)(VALUES PESPSCTI VELY*)
VAR S,FRI, T!2,P 3F'11 FP1 T.TINTEGEP; (*S=SIDE F=FILE R1=RA?!K VAR 1*)

(*R2=Rt!K VAR ,Fi4=FILE MiINUS 1,FP1=FfLE PL1J9 1,I=GE!1 PURP.*)
VAL : ARP.AYE'HIT..9LACK) OF REAL- (*I~t'PKV ALUES*)
I-IRKSQ:CIISSQR; (*FOR UJSE ill C1!ECKIfG ?STTR!EUTES OF PAWN-tS*)
OPS:PLAYERP (*IIOPK VARIASLE FOR OPPOSITE SIDE*)
TEM1PI TE!MP ,TEi1P3:REAL (*,.?ORr VAR IAeLES*)
SL 4SE STILLISOI. D :OOnEDOLEAN; (*PAWN ATTRIBUTES*)

ATKARY:FRTOAhRAY; (*FOR CHECKING ATTACK ON SQUARES IN FRONT*)
(*OF PAWlS*)

6WHITE):= n~.; VALECLACK):4.0;
FOR S:=' 'IITE TO PLACK DO
FOR F:-1 TO 8 DO
FOR R1:=2 TO 7 DO
IF BRDR.PBES4pR1,F] THEN (*PAtWN ON THIS SQUAREFIMD ITS VALUE*)

BEGI N
STILLPASSED :=TRUEj STILLISOLATED :=TRUE; DOUBLED :FALSE;
F111 := F-1; FP1:=+I
IF S=UHITE THEN1 OPS:=DLACK ELSE OPS:=WHITE;
FOR R2:=2 TO 7 DO

BEGIN
R3:=9-R2* (*ONVERTS TO OPS RANK STRUCTURE*)
IF NOT D6USLED THEM IF R2<>!Z1 THEM

DOUBLED :=BRDR.PrI:s P2 F)*
IF (1R2 > R1) A*!D STILLP§S-D tilE?!

STILLPASSED=CIOT CBPDR.Pr.Ecps .1 F'113 OP
(BRDn P~tOPS r.4 F) ono 40r6PS !!3,FPl))));
C*STI[LPASSE6:-- OOPPOEllT'.S PA!'IS AHEAONAYF*
(*TiREE FILES CEN!TERED ON THIS 0.E) ADO NYO*

IF STILLISOLATED THEN)
STILLISOLATED := (NOT

CDRDR PBCS R2 F:113 OR BRDR Pecrs R2,FP13))
C*STIELISO[AT1D:=f!O FRIENIDLY PAf"NS IN PAN~k R20)

EN.(*INJ FILES ON EITHER SIDE OF THIS ON1E*)

IF DOU6LED THENi VALES]): VALES) - 8;
IF STILLISOLATED THEM VALES) := VALES) - 20;
IF STILIPASSED THEN

(*CALCULATE PASSED PAUN SOrNUS*
BEGI N
TEMP1:=2.3; (*BASIC PASSED PAI*!N rMULTIPLIER*)
IF S=BLACK THEN 1VRKSQ:=((G8-R1)*8)+F-8
ELSE V1RKS:(8*(R1-1))+F+8,.
C*WRKSQ NOW1 EQUAL TO SQUARE 'IN FRONT' OF PAWN'S*)
C*f4OVErlENT*)
ATKD:=ATKDFROtl(RPDR~r 13'PKSQ ATKARY 5);
IF BRDR.E3EURKS03 IN S1DESETtOPSJ TIE?!

(*SQUARE IN) FRONT OF PAW1N IS BLOCKED BY*)
(*OPPOtJEtJT'S PIE CE*)
TEMPI.= TEMIPI - 07*lpIF ATKD tHEN TErP:4 E -l0.4
(*SQUARE IN FRONT OF PAWNI IS ATTACKED BY 0)
(*OTIIER SIDE*)

ELSE IF ATKARYE0I.SQ>O T1HEN TE:?1P:=TEI1P1+0.3;
C*AI-1r! PROTECTED BY O~~?I SIDE*)

VALES] := RI*Rl*TEr1 + V'ALES]"
,(*PASSED PAIIN VALUE IS RA?,%!K *!Uf'.qER*)
C*TIrIE S FI'!!AL V~ALUE OF TE'IPl*)
EtfOD U*PA S ED PA!'f! SONUS CALCL'LATIOtI*)

(*flow 1HECK ADVANCEfiENT B0t!US*)
CASE F OF

1,2: (*NO 6OU0
3: VALCS3:=VAL S3 + (RI-2)'3 9;
4: VALES):=VALCS3 + (RI-2)*S.4;
5: VALCS3:zVALCS3 + (RI-2)'7 0;9: VALtS3:xVALtj3 + CR1-2)*2 .3;

END; *CSE
END; ('PAWN EVALUATION LOOP*) y

TH IS .

94

VAR HDIS,VDIS:REAL;
-BEGIN
VDIS ADS((((01-1) DIV 8) - (CS02-1) DIV 8)))
HDIS ABS(((SQl-1) 110D 8) - ((SQ2-1) M~OD B)))(TAXIDIS :=VDIS + HDIS;
END; (*TAXIDIS*)

FUNCTION PCVAL(PC:CHSi'MEN) REAL;
BEGI N
CASE PC OF
WP.BP: PCVAL:=10;
WN,BM: PCVAL:=3.5;
WB,BB: PCVAL:=35;
WR,BR: PCVAL:5 0
WQ,6O: PCVAL:=9O
WK SK MlT- PCVAL:0O.O;
EN6; (*CASE*)
EPID4(*PCVAL*)

FUNCTI6M DELDPAIWM(VAR 6:8OARD; VAR SQ:CHSSQR) :BOOLEAN;
VAR ITEMP,J: IMTEGER;
BEGI N
DSLDPA'Jt : FALSE;
ITEIP :=SQ MOD 8;
FOR J:=0 TO 7 DO

IF (J*8 + ITEMP) <> SQ THEM
IF ~FtJ*S + ITEE-7P) = B[SQ3 THEN DCLDPANWN:=TRUE;

END; (*DRLDPA!.n!t*)
FUNCTION DECLDPC(VAR PCREC:PCSTATREC) : OOLEA?';

(***FUNlCTIONj DSLDPC(VAR PCREC:PCSTATREC) : OOLE.P!N*)
(***THIS ROUTINE CFECKS PCREC TO SEE !F TH!E PIECE AT PCPEC OtN*)
(***IS DOUBLED !-*:HICII IS DEFINIED AS T!!O PIECES OF'THE SA?'E*5
(***TYPE IN THE SA!ME RX"' OR FILE W'ITH MO INTERVENIN~G PIECES.*)
(***THE POUTINE L06O'S STRICTLY FOR DOUBLIfJG AN'D 11OULD 'IISS*)
(***lTRIPLITG' OR LARGER NUSEPS.*)
(***FUMICTIOtl IS TRUE IF DOUBLIMG IS FOUND*)
LABEL 1hEGR
VAR I:IiTG;
BEGIN
D8LDPC :=FALSE;
FOR I:=1 TO PCREC.TOO[O).SQ DO

IF PCREC.PC = PCP.EC.TOOEI).PC THEN
BEGIN DELDPC:=TRUE; GOTO 1 EUD;

1: END; (*DL'LDPC*)
PROCEDURE f'EUP~rElRDC'AR e8ROR:9PDREC);

(***PF!OCEDUE f!EUPvrPD (VAR FPDR:nRDREC);
(***THIS ROUTINE GEVERATES THE BOOLEAN PAUN aOARD CORRESPO1'DIMG*)
(***TO THE PA91N STRUCTURE OF BOARD BRDR.B AND RETURNS IT IN BRDR.PB*)
VAR I:IITEGER;
BEGIN
(*SET DUMMY FILES 0 AND 9 FALSE*)
FOR 1:=1 TO 8 DO

BEGIN
BRDR.PBClU.HITE,I,O):=FALSE; BP.OR.P8Ell~HITE,I,93:=FALSE;
BRDR.PB[BLACK,I,O):=FALSE; 0RDR.PBEELACK,I,93:=FALSE;
END

C*SET iANKS I AMD 8 FALSE SINCE THEY CANNOT CONTAIN PAWMS*)
FOR I:=O TO 9 DO

BEGIN
BRDR.PBtllHITE,1,IJ:=FALSE; BRDR.PBC1lHITE,8,I):=FALSE;
BRDR.PB BLACI(,1,I):=FALSE; BRDR.PBEFtACK,8,I):=FALSE;
END;

(OCHECK SQUARES ON BRDR.B THAT CAN) CONTAIN PAUMS*)
FOR 1:=9 TO 56 DO

BEGMI
ORDR.PB(W-.HITE,RA:KCI,IZHITE),FIL(I,'IH!TE)I MrPDR.ECI3''P);
BR.DR.PBCBLACK,QAN.K(I,BLACK),FIL(I,BLACK)I (8RDR.013=g)P)pt
END

END*((jEllPI'~~f8D*)
PROCEDORE EVPAUMS(VAR SPDIR:BRDREC; VAR VALUE!'JVALUEB:REAL);

(***HISROUIE VALATE THEPAV BORD RDR.P , '111CH SHOULD HAVE*

(***BEEN GENERATED FROM1 THE BOARD IN BRDR, AND REtURNS THE VALUE*)

96 "IS PAGE IS REST QVMI1TY FRACTICVAFJI

JWNUW uor Y Y ,fl7 ': D

3:WRKSO:=E(FR)*
~:WPKSO:=SJCFR5;
6:WRKSO:=StW(FRS;
7:WRKSQ:=UCFR)
8:t-!KSO): ="'?(F Pi;
EN40 (*CASE*)

IF URK 0 <> 0 THEM
IF (8[C!)fKSQ]=!)K) OR (BEW-.RKSG)8PK) THEN

BEGMt
MUr1ATKS: =t!LI!.,ATKS+l1
F RAR YUMM~~t ATS . S O: i IMS0 -
FRARYMMU!ATKS] . Pr: =
IF NOT SAVEATK THE!' SAVEATK:=(!0.T (BEW.RKSQ] IN

SIDESETCPLYR));
EMD;

E'D6 (*CHECK OF KINIG ATTACKS*)
FRARYU6 3.SO:=M!lATKS;
ATKI)FROM : SAVEATK;

EMD; (*ATKDFPOI*)
(*** END f'OVE P.OUTI.ES **

PROCEDUR.E MEUDP.D(VAP. F,-D:nPD!EC; VAnr'VEFF:ItITEGER);
(***PROCEDURE VEUD07D(VAfl ErTD::rDREC; VAR ^1%EFF:IT!TEGER); *

(***TIIIS rCUTIME I!ITIALIZES THE OPrD;EC IZOPRD FCR THE *
(***BEGINNINJG OF A GAM1E WITH BRD.REF SET TO PEFF*)

VAR
I J,K:IINTEGER;

BEGM(
(*FIRST IM~IALIZE THlE POARD III BRD.L%*)

(*BLACK BACK RV,.! FILLED FIRST*)
BRD.c3C571:= BR; flDRTC5(^):=Drj;rBPD.P59]:F=fl; 8RD.P6OJ:C0;
ORD.DC[61 :=3K; -?D...,623:=E!O; , P..B63):=BM; BRD.8C64):=BR;
(*BLACK MAIMS 1!EXT*)
FOR~ 1:=49 TO 56 DO r.RD.Ptl):=SP;
(*EMPTY !1IDDLE OF FOAPD*)
FOR 1:=17 TO 48 DO CRD.BDE3:fl'T;
(*WHITE PA!WNS ?:EXT*)
FOR 1:=9 TO 16 DO PT!D.P1I):=!,P,

M(fl. FILL IN !''HITES 'SACK RD.11*)

B110.8(5): 1!K, TRD . 6J:=ltlr BrD rC'173-111'* BPD.rE18):=l!R;
(*fJOW1ITIALIE STATMS VAAIABLtS',(J RECORD SRD*)

WITH ORD 00
BEGIN
CHK:=FALSE; 1.1!KR:=FALSE; !KK:=FALSE; tOR:ZFALSE;
BKR:=FALSE; FSKK:=FALSE; BOQP:zFALSE; EP:=O;
REF:=REFF; WORB:=t!HITE;

EMND (*?'El)SRD*)
FUMCT16m RADJ!K(SQ:CHSSOR; "HOSE:PLAYER) : I!ITEGER

(***FUtICTIOIJ RA.,.K(SO:CIFSSOR* IHOSE*PLAYEP) :ifiTEGER; *
(***THIS ROUTINE RETURN~S THf RANK OF SQ WITH RESPECT TO*)
(***TO PLAYER !'POSE*)
VAR TEMP:IflTEGER;
BEGIN
TEMIP := (SO-I) DIV 8;
IF WHOSE = UNITE THEM RANK -.= TE!4P+1
ELSE RANKC := 8-TEMP;
EN'D, (*RANK*)

FUJNCT16m FIL(SQ:CIHSSOR; IW-HOSE:PLAYER) : IMiEGER;
(***FUNICTION FIL(SO:CIISSOR;* IIHOSS:PLAYEP) : IN1TEGER; *
(***THIS PR0UTIIE PETUP!S TAE' FILE OF SC '!HE"E FILS ARE t'UIFERED*)
C***FRori QUEENS ROOK TO OUEV!1S KNIIGHT ... TO KINIG'S ROOK ' ITH*)
(:**1 2 8 PETUrED. ALT:1OUGH PLAYER IS NOT USED IT IS PLACED*)

(* A§;PARATMETER SO THE CALL TO RANK AND FIL ARE IDENTICAL*)
BEGIN
FIL := ((S - 1) MlOD 8) +1;
END; C*FIL*)

FUNCTION TAXIDIS(S~1 S02:CPSSOR) : REAl,;
(***FUPNCTIO'! TAX1IS(Sl,iS02:CPSSCR :REAL-.*)
(***THIS ROUTIME RETUMNS THE TAXIDISTA!!CE EHTWEEtN THE*)
C***TIO CHESS SQUARES GIVEN AS PARAMETERS*)

96 THIS PAGE IS REST QUJALITY FRM-A,
Pia WxI I x I~)~ Q1iLg; IV ADC

BRDR.EP:=T00;
EMD8

FUNCTI6N1 ATKDFROM;

THIS FUNCTIONM EXArMIPES THE Er0ARD C MID RETURNIS A LIST OF ALL
PIECES ON THE FOARD THAT PAY ATTACK. SCIJAflE FR. THE LIST IS
RETUPINED IM FRQP-TO-ArRAY FRARY WITH THE ?PU.;E OF ELEENTS
Itl THE ARRAY USED INDICATED BY ELE'!EPT FRARY[OLSO. ALL
PIECES WHICH MAY REACH FR ARE INDICATED WITHOUT REGARD TO
SIDE

VAR
WRKFRARY :FRTOARRAY-
I IJRKSQ NUrATKS:IfITEdER;

9AVEAT BOOLEATI;
(*2 **)

PROCEDURE ADDATK (PC: CHSMEN);
VAR I:IMTEGER;
BEG I
FOR I:=1 TO VRlKFPARYCO).SQ DO

IF SCWRKFRARYCI].SQJ =PC THEtl
BEGIN
NUIIATKS:= NUTIATKS+l;
FRARYE?UIATKSJ. SO: =ULPKFARYEI). S.;
FRARYECNUf1ATKS) .PC: =PCiET:llT(CI DSTPL*];IF NOT SAVEATK THEN SVET:CO(PINSEETLY);
END;

END; C*ADDATK*)

PROCEDURE ADDPAtUNfATK(FR:ClJSSQR; PC:CHSNEI);
BEGI N
flUrI'ATKS: =Ir!ATKS+1;
FRARY C :Wf;AT!KS).SQ :=FR;
FRAPY m uT1,ATKS].PC :=PC;
IF t?'OT SAVEATK THEM SAVEATK:(NlOT (PC IN SIDESETEPLYR)));
END; (*ADDPAI-)NATK*)

BEGINI
MJL1MAT KS: =0;
SAVEATK :=FALSE;
(*CHECK PAUN ATTACKS FIRST IGNORE ctl PASSEMT*)
If ((R MOD 9) <> 0) AMD dR >16) THEN

IF BEFR-7) = UP THE!!
ADDPAIMATK(FR-7 UP);

IF ((R MOD 8) <> 1) END (FR>16) T14EN
IF BEFR-9) = UP THEM

ADDPAI-?IATK(FR-9 UiP);
IF ((FR MOD 8) <> 1) AIND (FR<49) THEN

IF BEFR+7) = RP THE.N
ADDPAUMATK (F R+7 13P)

IF ((R MOD 8) <> 0) AND (FR<49) THEN
IF BEFR+9J = BP THEM

ADDPAMIATK(FR+9 CM)(*PjOtW CHECK OTHER PIEfES*5
(*SIN.CE LISTMOVES ACTUALLY LISTS ALL StOUARES REACHAB3LE*)
(*INCLUOIMNG THOSE COMTAINING PIECES,nEGARDLESS OF SIDE OF*)
(*OF THOSE PIECES OMLY MEED TO LOOK~ AT ONE OF EITHER !M0)
(*OR BtN 113 on M ETC. ADDITIONALLY FIND CUEEM ATKS*)
(*BY LO6IG AT 13!SHOPS AMD ROOKS TO SAVE ONE EXECUTIOM*)
(*OF LISTrIOVES*)
LISTr4IOVES(tlfN,13 "RKFRARY,-FR);
ADDATKQU) -AD AT:, (C,")
LISTMOVESff'D 2 PFiRR)
ADIOATK(-.'S); 4DATI(FS); ADDATK(WQ); ADDATK(BQ);
LISMfOViSHM , -"'KFkA Y,Fr,);
ADDATK(IIR); 'AD6ATK(BrP); ADDATK(WQ); ADDATK(GO);
FOR 1:=l TO B. DO

BEGIN (*HECK, POSSIBLE KI1G, ATTACKS*)
W*Ar!'T CALL LISTPlOVES BECAUSE IT CALLS KMOVE WHICH*)
W*ALLS ATKDFROII*)

CASE I OF
1:WRKSQ:t1(FR),
2:WRKSQ:=fE(FRl; V AG - --

97 'IY Q'

(*t.O!.! SEE IF KING !.OULD OE I,! CHECK*)
ATKD:=ATKDFRO,(B TOIO0'].SO=" .SATKPLYR);
IF ATID THEt TOO[TOOC .SO' C:=C,;
(*SQUARE KING COULD HAVE 1OVED TO IS ATTACKED*)
(*BY OPPO...T'S PIECE IF .TD TRUE SET ITS*)
(*VALUE IN TOO ARRAY RETURNED BY KrdOVE TO CK*)
(*FOR CHECK*)
END;

ENlD;
EHD; (*KrlOVE*)

PROCEDURE LISTrtOVES(PC:CHS'EN; VAR B:BOARD; VAR TOO:FRTOARRAY;
FR:CHSSQR);("**

PROCEDURE LISTtIOVES LISTS ALL POSSIBLE MOVES FOR CHESS PIECE PC
LOCATED ON SOUAPE FR OF DAOPD C IITH THE LIST RETURNED It! FROtl-TO-
ARRAY TOO. THE VUTEER OF ELEFE,'!TS IN TOO USED IS IINDICATED EY
TOO[O.SQ. A PROTECTED FRIErDLY PIECE'S SOUARE IS RETUPRED AS A
POSSISLE f*OVE SOIJARE EVEN THOUGH NOT A LEGAL lOVE TO FACILITATE
THE SEARCH FOR SUCH SOUJARES AN:D CEN!TRALIZE THE CO IIOl FUNCTION OF
SQUARE SEACRH IN PROCEDURE LISTriOVES.

BEGIN
TOO [0].SQ:=0;
CASE PC CF
WP: UPNOVE(S TOO FR);
WM: fltOVE(B, fOO,!R);
WB: aIOVE(2,TOO,FR);
WR: R'OVE(8,TOO ,Fl.);
WQ: QN!OVE(B,TOO ,FR)
WK: I'MOVE(B TOO FP(IHITE);
BP: BPr1OJE(6 T06 Fn);

BB: BIfOVE(',TO0,FR);
BR: RF.OVE(B,TOO,FR);
SO: QrIOVE(B,TOO,FR);
BK: KrIlOVE(B TOOFR CLACK);
IT: (*r.ULL 11IOVERETURN .R AS SET ABOVE*)
END; (*CASE*)
END; (*LISTM.OVES*)

PROCEDURE MOVEIT(VAR BRDR:BRDREC; FRTOO:CHSSQR);

PROCEDURE 1OVEIT 'OVES THE PIECE ON SQAURE FR OF TIHE CHESS BOARD
BRDR.B IN BOARD RECORD BRDR TO SOUARE TOO. ALL STATUS VARIABLES
IN BRDR ARE APPROPRIATELY UPDATED AS IS TIHE PAW'N BOARD REPRE-
SENTATION QRD.Pr. Pp 0 CHECKS ARE PNADE ON MOVE LEGALITY OR
ACTUAL CONTENTS OF SQ AND TOO.

VAR IJ:INTEGER;
TWORB : PLAYER;

BEGIN
BRDR.B[TOO := BRDR.B[FR];
BRDR.B[FR] :=rT;
IF BRDR.WORB = UHITE THEN

BEGIN
BRDR.WORB:=BLACK; (*BLACK TO MOVE NEXT*)
TWORB:=UHITE; (*SAVE FACT WHITE JUST t.NOVED*)
END

ELSE (*BLACK PIECE JUST MOVED*)
BEGIN
BRDR.WORB:=WHITE; (*WHITE TO .OVE NEXT*)
TWORB:=BLACK; (*SAVE FACT BLACK JUST '.'OVED*)
END

(*UPDAE CASTLING BOOLEAN FLAGS It! BRDR*)
IF BRDR.B[TOO] I! .7',BR,UK,U R) THEN

CASE BRDR.9[TO0] OF
BK: BDR.UKK := TRUE;
BR: IF (FR=57) THEN ,RDR.BOR := TRUE

ELSE IF (FR=64) THEN BRDR.BKR := TRUE;
WK: BRDR .KK := TRUE
WR: IF (FR=I) THEN !3,DR.IQR := TRUE

ELSE IF (FR=8) THEN BRDR.WKR : TRUE;
" END; (*CASE*)

98

.;...A

IF USQ<>C THEN' REPEAT
ADDP',OVE(0 TOO,tISQ);

UNTIL ('WSO =0) OR CTOOCTOOCO.SGJ.PC <> rIT);
WrSO : SECFP)
IF WS0<>C) TI]Ei! REPEAT

ADDrMOVEM 3TOO 'IsQ);
VSQ : SEQJSQ5;

IF WSO <> 0 THEM!
UNTIL (VISQ=O) OR (TOOETOO10J.SQ].PC <> MT);
WSQ : SIU(FR);
IF USO<>6 THE! REPEAT

ADDIIOVE(E TOO fUSO);
VISOQ S''tU)SQ5;

UNTIL (VISQ:=O) OR (TOOCTOOOIO.SQ3.PC <> MT);
WJSQ : IF)
IF tI.SQ<>O THEN REPEAT

ADD."OVE(R TOO 'ISO);

UNTIL (WSQ=0) OR (TOO[TOOEQ].SOJ.PC <> MiT);
EtID* (*BrIOVE*)

PROCED6PE RfIOVE(VAR 6:8OARD; VAR TOO:FPTOARRAY; FR:CHSSQR);
VAR

VUSQ: CHSSQR;
BEGIN

IF IWSC<>O THEN" REPEAT
ADDr*,OVE (S,TOO,t!SQ);
VISOQ=fWS

UMTIL (VISQ=O) OP CTOOCTOOC.SO).PC <> MiT);
WSQ:=E(FR);
IF VISQ<>0 THEMl REPEAT

ADDn.'OVE(P TOO VISO);
WSO :=EaiSO)

UNTIL CUlSQO) OR'(TOOCTOOroC].SQj.pC <> MiT);
WSQ:=SCFR);
IF WISQ<>O THENl PEPEAT

ADD!IOVECB TOO,1'SQ);

UNTIL (t.:50=0) OIR (TOO[TOO[OJ.S0].PC <> MiT);
WSQ -'(FP)
IF WSQ<0 jHEM REPEAT

ADD1nOVE(C TOO,I.SQ)
WSQ := UMrjSC);

UNTIL (UISQ=O) OR (TO,,TOO[OJ.SQ).PC <> MT);
EMD; (*RrlOVE*)

PROCEDURE QflOVECVAR B:Bj~ARD; VAR TOO:FRTOARRAY; FR:CHSSQR);
BEGI N
BNlO E (, TOO, FR);
RflOVE(B TOO Fe).
ENID; (*61OV6*)

PROCEDURE KrIOVEcVAR B:BOARD; VAR TOO:FRTOARRAY; FR:CHSSQR;
PLYR:PLAYER)

VAR I J1.'RKSO: IITEGER;

ATK:FRTOARRAi;
BEGIN
FOR 1:=l TO 8 DO

BEGIN
CASE I OF

1 :WRKS0:=V(FR)
2:WRKS0:=?,E (FRS;
3:WRKSO*=E(FR),
4:WPKSQ:=SE(FR5;
5:WRKSQ:=SCFRY)j
6:VIRKSQ:=St'(FRi; ~~-
7:WRKS:=ll(FR)
8:IURKSQ:=n!,J(FRi;
END (*CASE*)

IF VWRKiQ <> 0 THEN(BEGIN
ADDMOVE(t,TOOWRKSO);

99

ADVMOVE(B,TOO,11SO);
END;

END;
EMD; (*t!P.-OVE*)

PROCEDURE OPMOVE(VAR B:BOARD; VAR TOO:FRTOARRAY; FR:CHSSQR);
VAR

WSQ: CMSSQR;
BEGI N
1)SQ := SUMF)IF ED Sn) <> ifTTHEM~

ADDtlOVE(F3 TO,1SQ);
WSQ := SECFR5
IF BCWSOJ <> 6Tr THEM

AD Dt0 yE(, TOO,l!SC) ;
WSQ :=S(FR)
IF MItS0.3 = ?,~T THEM

BEGIN
ADDr--ovE(,OO,!uSo);
IF FR IN [49..56) THEN (*40..56 IS BLACK PAWN RANK*)

BEGIN
WSQ := SWSQ).
IF 13EUSQI = llf THEM
END D MOVE(B. ,TOO,I-SO);

END;
END; (*CP':'O\E*)

PROCEDURE lMOVE(VAR C:EOARD; VAR TOO:FRTOARRAY; FR:CH-SSQR);
VAR

WSo , WSO2 :CHSSOR;
BEGIN
IF FR <= 48 THEM t-IS02 :=N(N(FR))
ELSE t.Sn2? 0;
IF (WSQ2 > 0) ANID (WSQ2 < 65) THEM

BEGI N
WSO : E(USQ2);
ADDMOVE(G TOO 11SQ);
WSQ : W((0SQ25.
AD DM0 yVE B, TOO, ISQ) ;
EMD4

IF ((F~ MOD 8) <= 6) OR ((FR MOD 8)<>O) THEN WS02 :=E(E(FR))
ELSE WSQ2 -:=
IF (WSO2 > 0) AND CWSQ2 < 6S) THEN

BEGIN
WSQ :=CUSQ2);
ADDrlOVE(B TOO "ISO);
wSQ :=C(MS025'
AD D .O yE(CB,TOO, 4SQ) ;
END;

IF FR >= 17 THEN I-SQ2 :=S(S(FR))
ELSE WISQ2 -
IF (VWSQ2 > 0) AND (WSQ2 < 65) THEN

BEGIN
WSQ :=E(W-SO2)-
ADO?1OVE(B TOO)JSo)
WSO : twd(,Sa25;
ADDr1O yE(CB, TOO,WISQ) ;
END

IF W4F M.,OD 8) >= 3) OR ((R MOD 8)0O) THEN 11502 W(I-W(FR))
ELSE WSO2 -0;
IF (U1SQ2 > 0) AMID MUS02 < 65) THEN

SEG I
WSQ =fltlQ)
ADD11OVE(D TOO OTh);

AD DM0 yE (8B, TOO,6'SQ);
END;

EMD6 (*."rIOVE*)
PROCED RE BtIOVE(VAR 8:BOARD; VAR TOO:FRTOARRAY; FR:CHSSQR);

VAR
WSQ: CHSSQR;

BEGI NCWSQ := NE(FR);
TI A E1

100

FUNCTION W(SQ:CHSSQR) ClSSQR;
BEGIN
IF (SQ MOD 8 <> 1) THEN I.' := SQ-1 ELSE W := 0;
END; (* OF U FOR WEST '1OVE*)

FUNCTION tIW(SQ:CHSSQR) CHSSQR;
BEGIN
IF ((SQ>=1) AMD (SQ<=56)) AND ((SQ MOD 8) <> 1) THEN

V. =SQ + 7
ELSE NU 0;
END; (* OF V6 FOR NORTH VEST MOVE*)

(*** END OF rlOVE FUNCTIONS ***)
(*** tOVE ROUTINES ***)
FUNCTION AT"DFROrl(VA:) S:BOARD; FR:CHSSQR; VAR FRARY:FRTOARRAY;

PLYR:PLAYER) : POOLEAN; FC0.OARD
(*SEE ACTUAL DECLARATION OF ATKDFROl FOR DESCPIPTION*)

PROCEDURE ADD#-lOVE(VAR B:DOARD; VAR TOO:FRTOARRAY; SQ:CHSSQR);

THIS ROUTINE IS USED BY MlOVE PPOCEDURES !YHICH GEP!EPATE LIST OF
POSSIBLE MIOVES FOR CHESS PIECES. IT IS USED TO ADD THE SQUARE
NUMBER OF A POSSIDLE tOVE IN ,OARD B TO THE FRO'!-TO-ARRAY (FRTOARRAY)
TOO. THE POSSICLE r'OVE TO CE ADDED IS THE SIJARE FR - "OTE THAT
THE SQUARE NUrICER A'D THE CONTENTS ARE flEEDED IN THE LIST A:!D rOTH
ARE ADDED. IT IS ASSUrMED THAT ELENlE"!T TOO[O].SQ COVTAT~If t G THE
NUMBER OF FIELDS I! TOO ALREADY FILLED HAS BEEN I'TIALIZED APPRO-
PRIATELY BEFORE THIS ROUTINE IS CALLED.

BEGIN
IF (SO <> 0) THEN

BEGIN
TOOEO[.SO:=TOOC0 .SQ+I;
TOO[TOO[O].SQ SQ:= SO;
TOO[TOO[OJ.SQ].PC B[SQ];
EMD;

END; (*ADDtiOVE*)

THE FOLLOtWING ROUTINES VPtIOVE THROUGH KNOVE RETURN A LIST OF POSSIBLE
MOVES FOR THE PIECE INDICATED RY THE LETTERS PRECEEDING THE 11ORD flOVE
IN THE PROCEDURE TITLE. (I.E. UPrMOVE IS !WHlITE PAf!! NMOVE I-W'HILE ,,.,,OVE
IS KING iOVE.) IN EACH CASE BOARD B IS THE rOARD ON WH1ICH r'OVES ARE
TO CE IADE 'RHILE TOO IS THE FPON-TO-ARRAY THAT WILL CC1,TAI'J THE LIST
OF POSSIBLE MOVES. UPON EXIT FRO!I THE PROCEDURE TOOCO].Se "!ILL CON-
TAIN THE ,UNBER OF ELEIENTS I'! TOO FILLED. EVEN THOUGH 'OT A LEGAL
MOVE, ANY SQUARE CONTAINING A FRIENDLY PIECE IS ALSO RETURNED IF
IT CAN BE REACHED FROi THE PIECE EACH PROCEDURE IS ;!AgIED AFTER. THIS
IS TO FACILITATE SEARCHING OF PROTECTED FRIE!'DLY PIECES AS .!ELL AS
ATTACKED ENEMY PIECES. THE ROUTINES ACT AS IF THE PROCEDURE PIECE
IS ACTUALLY LOCATED ON THE EOARD ONl SOUARE FR EVEN IF ONE IS 'OT
ACTUALLY LOCATED THERE. THUS VP;1OVE CALLED PITH FR=9 GENERATES ALL
POSSIBLE IOVES ON BOARD B FOR A PHITE PAP!I LOCATED 0'! SOUARE 9 EVEI-!
IF THERE IS 1iO SUCH PIECE ON THAT SCUARE. THIS IS TO FACILITATE
SEARCH FOR POSSIBLE ATTACKS AND 1OVES It! ALL CIRCU:STANCES
--- THE ROUTINES ARE NORBALLY ACCESSED VIA THE ROUTINE LISTNOVES

PROCEDURE WPMOVE(VAR B:BOARD; VAR TOO:FRTOARRAY; FR:CHSSQR);
VAR

IJSQ: CHSSQR;
BEGIN
WSQ := M9(FR)
IF Be[SQ3 <> (IT THENll

ADD?'OVE(R TOO, SQ);
WSQ := NE(FR5S
IF Be[SQ) <> fiT THEN

ADDNOVEC(B,TOO,'SG);
I-ISO := t'(FR)-
IF eC%'SQ) = (iT THEN

BEGI N
ADDrOVE (, TOO, 'SQ)
IF FR IN C9.163 tHEN (*9..16 IS WHITE PAWN RANK*)

BEGINWSO ;=N(SO).

wIF B[SQ] =tIT THEN

101

- - l

APPENDIX 2

PASCAL CODE FOR CENTRAL ACCELERATED RELAXATION METHOD

((CARM) AND RELATED ROUTINES

102

(*$U+*)
PROGRAM DOCUMENT (I NPUTOUTPUT);

THE FOLLOWI!G ROPTlt!SS PPE ADAPTATIO!!S OF T14E CE;!TRAL ACCELERATED
RELAXTIO ;I .LGORITH,, C ESCRIDED r1Y SLAGLE IN THE PArCH 1979 ISSUE OF
COMMUI CATIOrIS OF TIHE ACt, (SLAGLE, 1979). THE ROUTINES HAVE FCEEPI
ADAPTED TO ACT Oil A FILE OF ITIEQUALITIES RATHEr, THAN A oATrIX OF
INEQUALITIES SO THAT LARGE IIUNFERS OF THEI MAY BE SOLVED SIMUiLTANJEOUSLY
WITHOUT REQUIRING LARGE AMOUNTS OF CORE STORAGE FOR THE ROUTINE.

THE ROUTINES ARE CODED IN PASCAL FOR THE CYBER 174 SERIES AS DOCUMlENTED
BY JENSEN AID "IRTH FOR THE CDC6600 (JENISON, 1979). THE COV'STANTS AN1D
DATA TYPES PRECEEDING THESE POUTINES LIrtIT THE r'U'17.ER OF IN'EQUALITIES
TO PE SOLVED TO 1000. aY CHA!G!NG THE VALUE OF EXTrPATTERNS (EXTENSDED
NUMBER OF PATTERNS) THE ROUTINES : AY PE USED TO SOLVE ANY IIU.BER OF
INEQUALITIES, SINCE THE INEQUALITIES ARE EXPECTED TO BE ON A FILE.

THE AR;IFILE1ODE IS A FILE MODE EXECUTIOn OF THE ACCELERATED RELAXA-
TION ALGORITHM AS DESCRIBED BY CHAr.!G (CHANG, 1971) AI:D AS ADAPTED BY
HIM FROM MAYS (fAYS, 1964). SLAGLE'S ADAPTATION .AS !'EPELY THE

.CENTERING OF THE SOLUTION FRO'- THE ACCELERATED RELA,'ATIOrl METHOD (ARM).
CARrIFILEtN'ODE IS FILE tlODE EXECUTION OF CENTRAL ACCLERATED RELAXATION
METHOD (CAR!). IT EXECUTES ARMFILE1ODE AND CEPITEPS A SOLUTION IF
ONE IS FOUND.
CHANGES TO THE BASIC ROUTINES ARE VOTED.

CONST

(*** PATTERN WORK CO!ISTATITS ***)

NFEATURES = 30;
NPATTERMS = 100;
EXTNPATTERNS = 1oo;

TYPE

(*** PATTERN WORK TYPES ***)

PATVEC = ARRAY[I..V'PATTERPIS] OF REAL;
EXTPATVEC = ARRAY[1..EXTr!PATTERNS] OF REAL;
FTRVEC = ARRAY [1..NFEATURES3 OF REAL*
PATr.MAT = ARRAY[1..MPATTEPtIS) OF FTRVEC;
PATFILE = FILE OF FTRVEC;

FUNCTION DOTPROD(VAR VEC TVEC:FTRVEC; VAR NCOLS:INTEGER): REAL;
VAR I:I4TEGER; TEflP:REAL;
BEGIN
TEMP := 0.0;
FOR I:=1 TO NCOLS DO

TEMP := TEMP + VECEI * TVECCI);
DOTPROD := TEMPI
END; (*DOTPROD*5

PROCEDURE ART7FILEMODE(VAR AFILE:PATFILE; VAR t!E!IC:FTRVEC; MARGIN:REAL;
NRO.'S: INTEGER tICOLS: INTEGER; ROE:REAL; ITLIM:INTEGER;
VAR CONVRGD.R6OLEAH,);.

AFILE = A FILE OF PATTERN VECTORS CONTAINING THE INEQUALITIES
TO BE SOLVED SIMULTANIEOUSLY

NEWC = Off INPUT SHOULD CONTAIM THE IflITIAL GUESS AT A SOLUTIO:
VECTOR FOR THE SYSTEM OF INEQUALITIES CONTAINED ON AFILE; Ot.i
EXIT FRO'1 ROUTI"E 1!ILL CO'TAI,! SOLUTION VECTOR ACHEIVED UP TO
POINT OF DEPARTURE, !'PICH ,AY Or !!AY '!OT FE A TRUE SOLUTI.ON

MARGINI = THIS IIPLEE.'ETAT!O:1 OF THE ACCELERATED RELAXTIO! VIETHOD
ASSUMES IT IS 3EING USED FOR PATTEPN RECOG'!ITION !.'ORK IN WHICH
THE VECTOR D IN A TIMES NEIC = D HAS ELE.lENTS ALL EGUAL TO
THE VALUE MARGIN. THEREFORE .IMARGIN REPRESENTS ONE HALF THE
WIDTH OF A DEAD ZONE TO SE ESTABLISHED AROUND A SOLUTION
PLANE SEPERATING TUO CLASSES OF DATA. THE SOLUTION SEARCHED
FOR REQUIRES EACH PATTERN TIMES C TO BE >a MARGIN

103 s.A.'LR~

... . -- ,-. x ,'',-" °- "
'

NROWS = lUM.IBER OF PATTERNS (I!!EqUJALITIES) Of! FILE AFILE. THIS
NUMBER WAS A NATURAL DY-PRODUCT OF THE PROCPrAr' FROM1 1HICH
THIS ROUTINE IS EXTRACTED. A SI:PLE MIODIFICATION! OF READING TO
EPID OF FILE O! READS OF FILE III THE 'OUTI'!E FOLLO-IMG
WOULD ALLO! DELETION OF THIS P.PAPtIETER

NCOLS = THE NUT'SER OF ELErTEr!TS (COLU*'!'S) 1!1 EACH IVECUALITY
CONTAIN!ED Of! AFILE. SINCE PASCAL DOES TIOT PERT!IT VARIARLE
DIMENSION ARPAY THIS SHOULD EE THE ACTUAL 'rFrER OF ELErIENTS
USED RATHEr T!IA;N DECLARED. VALUES ARE EXPECTED TO BE COl-
TAIMED IN ELENIEtTS 1 THROUGH 11COLS

ROE = T14E PROPOPTIONALITY CONSTANT USED III THE RELAXTIOl
SOLUTION ATTE'IPT FOR THE SYSTE!' OF INEQUALITIES. FOR EACH
ROW (RECORD OF AFILE OR I"EnLUAL!TY) THE CO RRECTIOr TO THE
VECTOR C IF IT IS VOT A SOLUTIO" VECTOR FCR A PO'I IS

NEWC = NE!!C + ROE((rIARGIt! - "El'C TIrES INEOUALITY)/
(tAGITUDE OF INErUALITY + 1)) TIrES INEQUALITY
TRA"SPOSED

SEE CODE PELOI! AND/OR (CHAV!G 1O71:2?3)
ITLIti = THE rIAXIMiU, ,Ul.PER OF ITERATIONS TO rE ATTEMPTED IN

TRYING TO FIND A SOLUTION TO SYSTEM OF IEOULITIES
WHERE Aft! ITERATION IS DEFI.:IED AS A COTPLETE PASS TH4ROUGH
AFILE USING TIlE RELAXATION "!ETHOD OF "AYS (;.AYS, 1964)
FOLLOWED SY THE ACCELERATION SCHEf'E SUGGESTED E!Y CHAMG
(CHANGE, 1971) WHICH ALSO REQUIRES A CONPLETE PASS THROUGH
AFILE

CONVERGED = RETJRED TRUE IF f'Et,!C IS A' ACTUAL SOLUTIOtl TO
THE SYSTEM OF INEIUALITIES IF FALSE THIIA, ,E1C IS THE
ATTEMPTED SOLUTION THAT EXISTED AFTER ITLI:l PASSES THROUGH
BOTH THE RELAXATION AND ACCELERATION SCHErES

VAR I J. LAr:DASR K PlMSTAR.COUNT : ItTEGER;
ITERATIONIS : IEGER; (*COUMTS ITERATIONS PRFRMID*)

LAMBDA TEMPV : REAL;
G,H,U (WORK : EXTPATVEC;
A : FRVEC;
OLDC : FTRVEC;
0 : EXTPATVEC;

PROCEDURE EXTBUBLSORT(VAR VI:EXTPATVEC; VAR V2:EXTPATVEC;
N: INTEGER);

THE ACCELERATION SCHEME OF CHANG IMPLEMENTED HERE REQUIRES
THE SORTING OF VALUES. A BU IBLE SORT IS USED AS A QUICK
EASILY UNDERSTOOD SORT. IF VERY LARGE ur)PERS OF INEQUALITIES
ARE TO BE SOLVED IT SHOULD BE REPLACED WITH A MORE
EFFICIENT SORT.

CHANGS'S SCHEME REQUIRES SORTIMG OF A SET OF VALUES WHICH
EACH HAVE ASSOCIATED 1!ITH THEMI A SECOND VALUE. TtUS THIS
ROUTINE SORTS VECTOR Vl IN ASCENDING SECUENCE AriD ALSO
REARRA!GES VECTOR V2 TO MAINTAIM AM ORDERING OF ELEMENTS
PARALLEL UITH THAT OF V1. N SHOULD EOUAL THE NUMIBER OF
ELErIENTS IN THE VECTOR V1 TO BE SORTED W14HERE ELEMIENTS
CONCERNED ARE CONSIDERED TO BE BETWEEN ELEMENT 1 AND N
INCLUSIVE.

VAR I CNT:INTEGER;
TE.P.: REAL:
FLAG:BOOLEA;
BEGIN
CNT:=N
FLAG:=:TRUE;
WHILE FLAG DO

BEGIN
CNT:=Cf:T-1P
FLAG: = FALSf;
FOR I:=1 TO CNT DO

IF VIE1) > VlEI+1 THEN
BEGIN
TErP:=VI[I+1; VICI+13:=V IC1; VII):=TEMIP;
TEfIP:=V2EI+I; V2CI+l:=V2EI); V2EIJ:=TENP;
FLAG: TRUE;

1 0 4 -q w- •..,

END
ENlD

EMDW *EflD OF EXTSUELSORT*)
V* 11N BODY OF AR11FILEr100E**)

~*HIS SECTIOM FINDS M1AGNITUJDES OF ALL PO",S IN AFILE*)
(*A14D AD~DS OME TO THEM FOR USE BY RELAXATION PART*)
RESET(AFILE)
FOR I:=l TO i6ROWS DO

BEGI N
READ(AFILE,A);
WORK[1=:I 6 CLSDFOR J : 1 T6CLSD

WORrKEI) := UORKEI) + AU) * AU)I;
WORKCI) := WORKEI) + 1;

ITERATIOfS 0
COPIVRGD:=FALSE
WHILE (ITERATI61NS < ITLIM) AND (NOT COtNVRGD) DO

(*THIS SECTION PERFOP!TS A RELAXATION ?LGORITHl'- OfI*)
(*THE ARRAY A USING VECTORS C ANID D TRYING TO SATISFY*)
(* AC>=D *
BEGIN
RESET(AFILE)
(*SAVE CuFrREf!!T C FOR USE BY ACCELERATION fIODE*)
OLDC := !ElWC;
(*100IFIED RELAXATIOM PASS THROUGH ROtWS*)
FOR I :=1 TO NROWS DO

eEGIIN
READ(AFILE A)-
TENlPV :=D6TPPOD(fNE-'C,A,f!COLS);
IF (TE,'PV - r%.ARGIN) < 0 THEN

BEGIN
(*IIIEQUALITY VIOLATED FOR THIS R.1 CHAflGE C*)

FOR J:=1 TO NCOLS DO 'lEWC[J) : TlC[J) +
ROE*(.IARGIN-TErIPV)/WORK[1))*AEJ);

EDEND;
(*THIS SiCTION DOES PPECALCULATIONS FOR USE BY*)
(*ACCELERATIONl SCHEME*)
NLAfN'BDAS := 0;
RESET(AFILE);
FOR I :=1 TO lJROUS DO

BEGIN
READWAILEA)

GCI):=n; HcI):0O; LAMBDA:=0
(*CALCULATE ROV(J) TIMES VECTOR C FOR iACH ROW OF A*)
FOR J:1l TO HCOLS DO

BEG!IN
GFI3 AFJ) * OLDC(J3 +G1
H I A A * CflEUC[J3-OLDCEJj) + HE13;
END*

(*CALCULETE LAI-80A VALUE FOR EACH RO!J It! %-!ICP*)
C*HCI) <> 0 AtND STORE IN VECTOR U !!ITII SIGN OF*)
(*OF H~ 13 III VECTOR Q WHERE IMEAfNS>0,-1rIEANS<O*)
IF HEX) <> 0 THEN

BEG IN
LAMBDA : -GCI)/H[IJ;
IF LAMBDA > I THEN (*OILY SAVE IF > 1*)

BEG!?!
NLAt*.qDAS := r.'LATWIDAS +1;
IF HE13 > 0 THEM

0M.'A?19DAS3 := 1
EL SE aQCrLArIBDASJ := -1;
U I LAPMBDAS3 :a LAMBDA;

END* END; END;
(*NEXT S CTION SEES IF CONVERGENCE CAN BE ACCELERATED*)

(IF NIAMiBDAS <> 0 THEN (*CAN ONLY TRY ACCELERATION WHEN TRUE*)
BEGIIN

105

L - -- AL

E XT8UPL SORT(CU, Q,N AflBDAS);
LAMB!DA:z1;
M: =0I
FOR i := I TO N:ROtS DO

IF CEti) + HEI) <= 0 THEM' tl*-".+
C'COUNITING INEQUAL WRONG6 WITH fIEWC*)

f4STAR :=l;

FOR i:il TO NLA"FlDAS DO
Kz IF OCI > 0 THEN R:=R+l;

WHILE (R<>0) AMD (K<?LAnE3DAS) DO
BEGIN
Nl := rl-ROUMD(OCK);
IF OCK = 'ITHEM R:=fl-1;
IF (UCK) <> IJCK+1)) AND (fl < MSTAR) THEN

BEGIN
LAIIBDA:=(UCK3 UEK+1)/2;
MSTAR := M;
END;

K:=K+l;
END

IF CR05 AMD (K=MLgl?.DAS) THEN
IF I' < MSTAP THEM

LAMBDDA :=UCK) + 0.1;
IF LAMBDA > 1 THEN

FOR 1:= 1 TO MCOLS DO
NEWCCI) :=OLDC1EI)

LAMNSDA * (NEWCEI)-OLDC[I));
EN1D

(*M~STAR iS tMISER OF I!'EQIALITIES STILL WRONG*)
CONVRGD :=(NOT (!'lSTAP)0));
ITERATIONS := ITERATIOMS + 1;
EMD (*OF QIHILE STATtiEtUT*)

EfID; (*6F ACCELERATED RELAXATIOM METHOD ARMFILE[IODE*)
---- --- ----- ------------------------------------

PROCEDURE CAPRNFILEf'ODE(VAR AFILE:PATFILE; MROWS:INTEGER; INCOLSINTEGER;
VAR ?IEIWC: FTRVEC;

f*4ARGIN,ROE:REAL; ITLIt7:INjTEGER; VAR COfVRGD:8OOLEAN);
THIS ROUTINE IS TIIE CENTERED ACCELERATED RELAXATIONM ?1ETHCD OF
SOLVING A SYSTEM~ OF LIT!EAP INEOIIALITIES. ALL VARIAPLE VAMES IN
THE PROCEDURE CALL HAVE THE EXACT SA!E PURPOSE AS DESCRIBED FOR
THE VARIBLE OF THE SAP"E MAME 1II PROCEDURE ARMFILEIIODE WITH THE
FOLLOWIING NOTED EXCEPTION

NEWC IS STILL THE ITITIAL GUESS AT A SOLUTIOM TO THE SYSTEM OF
LINEAR IIJEOUALITIES CONTAIMED ONJ FILE AFILE. IF COfNVRGD IS
RETUPIJED, TRUE FROM T14E EXECUTIO'N, OF AR1IFILE:'1O13, N.Et)C is
MIODIFIED SO THAT IT IS CMITERED CETLIEEM THE ASSUMED
TWO CLASSES OF DATA nEPRESE?!TED SY THE LMEAR IfISOUALITIES
OF AFILE. IT IS ASSU'MED THAT THE LIN.'EAR IMEMUALITIES ARE ACTUALLY
REPRESENTATIONS OF AUG,'ETED PATTER,* %VECTORS AS DCSCRISED III
CHAPTER 4 OF THE THESIS :DCDY. SEE THAT C11APTER' APID/Oll (SLAGLE 1979)
FOR FURTHER EXPLAIMATION OF HOWJ PATTERNS ARE PREPARED FOR LI1NEAR
INEQUALITY SOLUTION

VAR I 3 :INTEGER;
MtINi GIINfESUEII,C: REAL;

A: FTROfEC;
BEGI N

ARM.FILEMODE (A FILE .0IIC, "AGIN MPO'IS MCOLS 1 0 ITLIM COr;VRGD);
(*READY FOR CENTf'RING'AFTER INITIACIZING'1iORf VAR*5

IF CON/RGD THEN
BEGIN (*CEN)TER MEl)C*)
RESET(AILE);

FOR I:=I TO NROWS 0O
BEGIN
READ(AFILE,A);ESUBI:O ;
FOR J:sl TO ?JCOLS 00

106

AI

ESU!31 := ESIJBI + A[J) * ME JCC);
ESUBI :=ESUECI - MARGIN;
IF ACNCOLS] > 0 THEN (*PATTERM It! CLASS 1*)

IF ESUDI < W~IN THEM FMIN :ESUBI
ELSE

ELSE (*PATTERPj It! CLASS TWIO*
EN;IF ESURI < GT1It THEN Gflin ESUBI;

C :=2 * r!APGII / (2*TARGIM + FtljIN + GrIt);
FOPl J:=1 TO MICOLS - 1 DO TIE(!Cr): C * rlE!C[J3;
NE1WCErCOLS] :=C2*4EVICENCOLS] +GflIN -FMIIJ) * C / 2;

EMD* (*OF IWCErJTERZ*)
E1D- f*OF CARMFILET10DE*)

BEGIN (*6uMirMY BODY*)
END.

T H I S P A C E 7 1 P -7 - .' T r n ' 7

107

APPENDIX 3
EXAMPLE PARTIAL GAM TREES, TIC-TAC-TOE

"I(lr

The following partial game tree represents the training boards used

in the attempts to find group and move discriminant functions as

described in Chapter IV. For each level, the move(s) that would lead

to the next lower displayed level of the tree represents the "recommended"

move. On the bottom level those moves which would lead to a win for

the side to move are the recommended moves. For each partial tree, 0 is

to move at the top level, X at the next, etc.

10

l 109

0

41J 0i
C-#

W%'

CT4#1!i
N -n

N* N oN

X i 110

#~~ N~ jO

ox

0

111

Vita

William Peter Nelson was born on 15 July 1952 in Framingham,

Massachusetts. He graduated from high school in Havelock, North

Carolina in 1970 and attended the United States Air Force Academy from

which he received the degree of Bachelor of Science in Computer

Science. He was commissioned as a regular officer in the USAF in June

1974 upon graduation. He was assigned to the Directorate of Medical

Systems, Air Force Data Systems Design Center, Gunter AFS, Alabama

as a computer systems analyst in August 1974. He was awarded the

Certificate in Data Processing by the Institute for Certification of

Computer Professionals in February 1977. He graduated from Squadron

Officer School, Maxwell AFB, Alabama in June 1977. He married Louise

M. Messenger, Lt, USAF, in October 1977. Captain Nelson was awarded

a Bachelor of Science in Math by Auburn University at Montgomery

in Montgomery, Alabama in June 1978. He entered the School of Engineer-

ing, Air Force Institute of Technology, in August 1978.

Permanent address: 105 Bryan Street
Havelock, North Carolina 28532

This thesis was typed by Mrs Anna L. Lloyd.

112

4.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THtS PAGE 'WI,.,n [s'a F 're.d

REPORT DOCUMENTATION PAGE READ INSTRLCTIONS
I BEFORE COMPLETING FORM

I. REPORT NUMBER T2. GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

AFIT/GCS/EE/80-2 1)803517_L O
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Learning Game Evaluation Functions with a MS THESIS
Compound Linear Machine

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(*) 8. CONTRACT OR GRANT NUMBER(s)

WILLIAM P. NELSON, Capt, USAF

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGPAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS

Air Force Institute of Technology (AFIT/EN)
Wright-Patterson AFB OH 45433

i. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

March 1980
13. NUMBER OF PAGES

122
14. MONITORING AGENCY NAME & ADDRESS(,i different from Controlling Office) 15. SECURITY CLASS. (of th-i report)

UNCLASSIFIED
ISa. DECLASS:FICATICN DOCWNGRAD!NG

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)

1S. SUPPLEMENTARY NOTES

Approved for pbllc release, IAW AFR 190-17

JOSEPH P. IIjPS, Ma AF
Director of iublic Affairs
IS. KEY WORDS (Continue on reverse side it necessary and identity by b ock numb r)

Pattern Classification relaxation algori thm game playing
Pattern recognition accelerated relaxation evaluation function
linear discriminants decision making chess
linear seperation artificial intelligence
linear machine machine learning

"f'o' thotfird"I'Iftwar machine as a solution to
the problem of learning in machine game playing. An attempt to use a compound
machine for choosing chess moves is reported on. Chapter II briefly presents
the background concepts in pattern recognition and machine game playing that
underlie the work done. Chapter III presents a proposed structure for a
compound linear machine that should be capable of learning in game playing. The
general rationale for the proposal is presented also. Chapter IV discusses a
possible algorithm for training the compound machine proposed. The rationale

DD O 1473 EDITION OF I NOV 69 IS O6SOLETE UNCLASS I FIT ED . ..
SE[CURITY CLASSIFICATION OF THIS PAGE (Wthen Deta Entated)

l i ., -- -

UNCLASSI FI ED
SECURITY CLASSIFICATtON OF TWIS PAGE/*fI*t Date Eneceed)

for each step of the algorithm is discussed. The Game of tic-tac-toe is usedas an example in explaining each step. Chapter V compares and contrasts thelinear machine approach with other approaches to game playing. Chapter
VI presents an attempt to apply the proposal and associated training algorithm
to the game of chess. Conclusions and recommendations are given in Chapter VII.

t

UNCLASSI FIED
SECURITY CLASSIFICATION 0 t PAGEIMO'en 000 Entered)

~di. - - ~-- - *.. ~ I'%. ~ -- -.--

